On the performance of orthogonal source separation algorithms
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Abstract. Source separation consists in recovering a set of n independent signals from m > n observed instantaneous

mixtures of these signals, possibly corrupted by additive noise. Many source separation algorithms use second order
information in a whitening operation which reduces the non trivial part of the separation to determining a unitary matrix.
Most of them further show a kind of invariance property which can be exploited to predict some general results about their
performance. Our first contribution is to exhibit a lower bound to the performance in terms of accuracy of the separation.
This bound is independent of the algorithm and, in the i.i.d. case, of the distribution of the source signals. Second, we
show that the performance of invariant algorithms depends on the mixing matrix and on the noise level in a specific way.
A consequence is that at low noise levels, the performance does not depend on the mixture but only on the distribution of
the sources, via a function which is characteristic of the given source separation algorithm.

1. Introduction.

This paper is concerned with the source separation prob-
lem which consists in recovering a set of n independent
signals from m > n observed instantaneous mixtures of
these signals. Denoting x(t) the m x 1 vector of obser-
vations (sensor outputs) at time ¢, possibly corrupted by
additive noise n(t), the model is

x(1) = As(t) + n(t) = y(1) +n() (1)

where the m x n matrix A is called the ‘mixing matrix’ and
where the n independent signals are collected in a n x 1
vector denoted s(¢). All the processes are assumed to be
zero-mean stationary. The aim of source separation is to
find a separating matrix, i.e. a n X m matrix such that
3(t) = Bx(t) is an estimate of the source signals.

In the complex case, model (1) is the familiar linear
model used in narrow band array processing. In this con-
text, it is usually assumed that the columns of A depend
on very few location parameters (such as DOAs) and this
dependence is assumed to be known via the ‘array mani-
fold’. In contrast, we address here a problem of blind array
processing in the sense that matrix A is completely un-
structured: it is supposed to be a fixed full column rank
matrix but no other assumptions are made.

The ‘blind’ approach is strongly motivated when i) one
is interested in recovering the source signals (like in com-
munication applications) but not in locating the emitting
sources and ii) whenever the array manifold is unavail-
able or is expected to significantly depart from its model.
Source separation is calibration-free and, by essence, in-
sensitive to modelling errors. Blind source separation re-
lies essentially on the assumption that the signals to be
separated are mutually independent; this is a strong but
often plausible assumption, which may be exploited using
either the non-normality (if any) or the spectral differences
(if any) of the source signals.
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Several block-oriented source separation algorithms have
been proposed in [1-7] which are based on a two step ap-
proach: whitening and rotating the observations. This pa-
per is concerned about the performance of such algorithms.
The idea here is to determine the general performance of
this approach without specifying a particular algorithm.
Although this paper addresses a statistical issue, empha-
sis is not statistical rigor but rather on exhibiting the al-
gebraic mechanism by which the prewhitening mechaism
affects the performance.

2. Performance and blind identication
2.1. Blind identification

A source separation algorithm also is a blind identification
technique and may be represented as

A= A(X7) (2)

where an estimate A is computed from a block of T'samples
by some algorithm which is represented here as a function
A of the m x T matrix! X7:

Xr = [x(1),...,x(T)]. (3)

Before going further, it is important to notice that the
function A may not be perfectly defined because of some
indeterminations of the blind identification problem. This
is because the exchange of a complex factor between each
source signal and the corresponding column of A leaves the
observations unchanged. Tt follows that without any loss of
generality, the source signals can be assumed to have unit
variance. With this normalization convention (we insist
that this is not an assumption), the covariance matrix of
s(t) is the identity matrix:

R. = Es(t)s(t)* = I. (4)

1'We use the same notational convention for Sy, Np, etc...



This convention still leaves undetermined the phase of each
column of A as well as their ordering since the ‘labelling’
of the source signals is immaterial. In the following, two
estimates A and A’ of A are considered as equivalent if

A= AJ (5)

when J is any n X n matrix with only one non-zero unit-
norm entry in each row and each column. We call such a
matrix a ‘quasi identity’; it is a unitary matrix. A source
separation algorithm (hence a function A) is considered
well defined if it is defined up to right multiplication by
some quasi-identity.

2.2. Rejection rates

We shall characterize the quality of an estimate Aof A by
the closeness of matrix A% A to some quasi-identity matrix
where supscript # denotes pseudoinversion. Indeed if A#
is used to estimate the source signals from the observations,
then N N N
S(t) = A* X (1) = (A* A)s(t) + A*n(1) (6)
so that the variance of the ¢-th signal at the p-th output
of the separator is given by
Ppy = |(A* ), (M)
since our convention is that each source has unit variance.
Hence, examination of the distribution P, provides a very
intuitive measure of thi perfoamance of the identification.
Note that changing A into AJ for J some quasi-identity
matrix amounts to changing Ppg into Py, where o is
some permutation of {1,...,n}. We assume in the follow-
ing that the permutation has been removed (for instance
on the basis of some additional a prior: information) so
that Pp4 actually is the variance of the ¢-th signal in the
estimate of the p-th signal. The phase indetermination is
invisible in Pp4. Also note that when A is close enough to
A, them Py, is close to 1: the quantities Pp, are readily
normalized and can be directly read as ‘rejection rates’,
‘interfer-to-signal ratio’; etc. ..

2.3. Invariance

Assume for a while that n = m and that no noise is present.
Some source separation algorithms yields the estimate of
A as the solution of

;;F 3G x(1) = 0 (8)

where G is some vector-to-matrix mapping. A slight modi-
fication of [8] falls in this class and [9] is an adaptive solver
of such an equation. The estimator A associated to (8) is
such that,

A(CXr)=CA(Xr1) J (9)
for any invertible matrix C' and some quasi-identity matrix
J. This property is called here full invariance (we consider
later a restricted ‘orthogonal invariance’). For a fully in-
variant estimator:

A* A= A(X7)"A=A(ASr) TP A= T A(Sr)T" (10)

for some J so that, up to a permutation, the distribution of
Ppq depends only on St in the noiseless case. We conclude

that in absence ofnoise, the performance of a fully invariant
estimator does not depend on mizring matriz A.

This very brief discussion on invariant algorithms is in-
tended to introduce the next two sections: these ideas can
be, to some extent, generalized to source separation algo-
rithms based on prewhitening even though they are not
fully invariant and are supposed to operate in noisy situa-
tions.

3. Invariant orthogonal estimators

A few preliminary definitions are needed. The signal sub-
space is the range of A and the noise subspace is the or-
thogonal subspace. The orthogonal projectors onto these
subspaces, respectively denoted as TT and TI*, are given by

M= AA* = A(ATA)T'AT, Tt =1,-T (11)
We also define the following covariance matrices
R, = Ex(t)x(t)*, R, =FEy()y(t)*, R. =En(t)n(t),
which, by independence of signal and noise, are related by
Ry, =Ry + R, =ARA" 4+ R, = AA" + R,.
3.1. A two step procedure

Source separation algorithms based on prewhitening com-
pute estimates of A in the form

A* =W (12)

where W is a n x m matrix called the ‘whitening matrix’
and is obtained from an estimate of R,:

W = W(R,) (13)

and U is a n x n unitary matrix computed from the
whitened data: N .
U=UWXr). (14)

More specifically, W is any n X m matrix verifying
WRWY =1,, WIit=0 (15)

where T+ = L’" 1T and T is the orthogonal projector on
the range of R,.

The idea here is recover the source signals by whitening
(second-order decorrelation) and then rotating thenm to
further satisfy a stronger independence criterion.

Our approach here is not to specify the particular al-
gorithm U used to find the ‘missing rotation’ because we
are interested in properties which are shared by all algo-
rithms based on prewhitening. However, we assume that
U satisfies an orthogonal invariance property:

VYV unitary, U(VZr)=VU(ZT) ] (16)

for almost any realization of Z7 and for some (irrelevant)
quasi-identity matrix J. Such a property arises naturally
in our context. For instance the maximum contrast esti-
mation [4] of U according to

~ (4 E
0 = Argmax 3 [Cam " (0Fz)F  (17)
U unitary .
1=1,n

is easily seen to be an invariant estimator. In fact, any
reasonable estimator of U obtained by optimizing under
unitary constraint a functional of the (empirical) distribu-
tion of UFx enjoys the orthogonal invariance property.



3.2. The noiseless case

As a first step in investigating performance, we show that
in the limit where the noise can be neglected, invariant
orthogonal estimators become fully invariant in the sense
of equation (9).

Note that if no noise is present, the signal subspace
can be determined exactly (as the range of }Afx for in-
stance); source separation algorithms can then operate en-
tirely in this n-dimensional subspace. As a consequence,
we can deal with the case n = m without loss of general-
ity. Hence in this subsection (only !), we take n = m so
that all the matrices of interest are invertible. Denoting

R.=T" thl 7 8(t)s(1)*, eq. (15) becomes
In=WR, WY = WAR.A"W". (18)

It follows that T//V\ satisfies W\A = Vﬁ;jﬁ where ﬁ;lﬁ is
the positive hermitian square root of R! and V is some
undetermined unitary matrix. Then

A*A=UWX)TWA=UVRIV2SHTVRIY?, (19)
and by the orthogonal invariance property (16):
A* A= JURT?5,)F RV (20)

for some quasi-identity matrix .J. This shows that the value
taken by A* A depends only on S7, the particular realiza-
tion of the source signals and not on the mixing matrix. In
fact, property (20) implies that orthogonal invariant algo-
rithms become fully invariant in the noiseless case (again,
we disregard the irrelevant quasi-identity matrix).

4. Orthogonal estimators in noise

To deal with the noisy situation and m > n, we consider
the polar decomposition of matrix W A as

WA=VH (21)

where V' is a » X n» unitary matrix and H is a n X n her-
mitian, (almost surely) positive matrix. Combining these
symmetry properties with (15), matrix H is found to be
the unique n» X n positive hermitian matrix verifying

H? = A R¥ A (22)

If R, is known exactly, i.e. if }Afy = R, = AA" then
H = I, so that the distance of H to the identity is a
measure of the whitening error.

Some algebra upon (12), (15), (16) and (21) produces

A*A = JU(H(Sr+ A*Np)PH (23)
Nr € (I, + (TM#1I4) Ny (24)
for some quasi-identity matrix J.

This is the noisy equivalent of (20) and forms the basis
to understanding how the invariance properties are affected
by the additive noise. The key point here is that matrix
A has ‘almost’ disappeared form (23): it only enters in a
noise term A% NT and also affects the distribution of H.

A pairwise lower bound. Orthogonal algorithms rely
on second-order prewhitening and are safe in this respect.

However this very procedure introduces a lower bound the
separating performance. The idea here is that errors in the
whitening step cannot be compensated by any unitary ma-
trix U. The required lemma is that H being an hermitian
matrix, then for p # ¢ and any unitary matrix U:

(O Hl? + 10 ) > el o)
" T (H)pp + (H?) g
Hence even the most clever choice of & in (23) cannot
bring Ppq + Pg4p closer to zero than indicated by the right
hand side of (25). This later term depends only on H and
is then independent of a specific orthogonal algorithm. See
(29) for an explicit evaluation in the i.i.d. case.

5. Asymptotics
To get further insights, we specify how }Aff is computed

from }Afx and go to the asymptotic domain.

5.1. Distribution of the whitening errors.

We consider the case of white Gaussian noise with covari-
ance R, = ol which allows for a simple estimation of R,
in the following standard fashion, based on an eigende-
composition of }Afx The estimated noise variance & is first
obtained as the average of the m — n smallest eigenvalues
of }Af Then, denoting Ai,..., A, and hq,..., hn the n
largest eigenvalues and associated eigenvectors of Rx7 R#

is computed as Rf = Zi:l -n(’\l — cr) Th;h?.

The first order expression of }Afy as a function of }Afx =
Ry + 6 R; may be computed by the standard perturbation
technique. Tt is:

APR*A = [-A*sR A 2 (A" A) " 4o(6R.).

(26)
Inserting 6 R, = T_lXTX; — R, in the above shows, af-
ter minor rewriting, that H? = AH}AF;A depends on ma-
trices J(AHA)_l, Sr, A# N7y and o'+ Ny which are
mutually independent under the current assumptions on
the noise. The distribution of A#* N1 depends only on the
covariance matrix of A¥n which is o(A7 A)~', while the
distribution of ¢~ '/?II* N1 does not depend on any pa-
rameter. We conclude that asymptotically, in spatially and
temporally white Gaussian noise, the distribution of H de-
pends only on the distribution of the sources and on matriz
(AT A~

5.2. The lower bound.

The asymptotic rejection rate 7, is defined by

Tr T+6R,
m —

def

Ipq = Tlgnoo TEPpq = Tlgnoo TEl(g#A)qu' (27)

Assume 1.id. signals and noise so that the variance of }Afx
decreases as T~ ' and (H?),p ~ 1. According to (25)

qu_|_ P |(H2)P<1|2

ap > (H?)pp + (H) g = %l(H2)pq|2 (28)

s0 that Tpg + Tgp > limr—oo TE[(H?)pg|?/2 which is easily

computed in the i.i.d. case using (26) and turns out not
to depend on the distributions of the source signals:

o
Ipg+Zgp > {(1+0Ppp)(1+0pqq)+ M} (29)



where ppq is the (p, ¢)-th entry of matrix (A7 A)~!. Tn
particular, in the low noise limit, the mean rejection rates
are lower bounded by a numerical constant:

> i. (30)

See a similar 1/4 factor due to whitening in an adaptive al-
gorithm [9]. This bound is tight: it is reached for instance
by the JADE algorithm [5, 10]. Note that 1/47 corre-
sponds to a 26 dB rejection for 100 i.i.d. samples which is
quite acceptable in many applications.

5.3. Rejection rates.

Herein, we assume circular i.i.gl. signals and noise and
large T. The distribution of fil#A can be characterizegl
from (23). Note that matrix (TITT)#T* goes to zero as TI
converges to T since TITT+ = 0 (it represents the amount
of noise ‘leaking’” from thf noise subspace into the signal
subspace due to errors in H) so that for large T, NT can be
safely approximated by Nt in (23). By the same argument
as above, we conclude that, for any orthogonal invariant al-
gorithm in spatially and temporilly white Gaussian noise,
the asymptotic distribution of A* A depends only on the
distributions of the sources and on matriz o( A7 A)~1.

It follows that the asymptotic rejection rates take the
form

Ipq = qu(”(AHA)_lv D) ¥p#4¢ (31)

where D represents the distributions of the sources. The
functions fp, depend on the specific orthogonal algorithm
U used for the estimation of U, but our point here is that
the dependence of the performance on the physical context
is always via matrix o( A7 A)™! which then quantifies the
‘hardness’ of the source separation problem. In particular,
the significance of a given noise level may be determined
by inspecting the entries of o( AT A)~1.

As a worked out example, the JADE algorithm [5, 10]
has an asymptotic performance given by

4
Ty = Yo gk +k)7 (32)
r=0

gga?z) = k2+lpk§+lqk2 (33)
1 _ 2 2.2 2 2
9pqg = ppp(ky +kg)" + ppplky(5kp +6) + lgky]

+ Pq‘][k?z(5kq+6)+lpk§] (34)
9(2) _
Pq

def

where I, = Bls,(t)]° — E?|s,(t)[*, ky = Blsy(t)]* —
2E%|s,(t)|%, and p, = (A7 A),,!. The performance index
shows terms with the noise variance raised to the 4th power
because the U function of JADE is based on 4th-order cu-
mulants. Only the first two terms are given here, but the
following ones also involve the coefficient |ppg|. The lowest
degree term shows the necessity of a pairwise bound since,
if the ¢g-th source is Gaussian (so that k; = 0) and the
p-th source has a constant modulus (so that I, = 0), then
Zpq = 0! This means that a Gaussian source, in this case,
experiences super-rejection (numerical experiments show
that its residual variance in the estimate of the p-th source
decreases as T™2.)

Conclusion

The most common class of orthogonal invariant algorithms
for the blind separation of independent sources has been
studied in terms of performance, quantified by rejection
rates Z,,. Emphasis was on the dependence of the perfor-
mance on the physical parameters: the mixing matrix and
the noise level. The following results were obtained.

o [t exists a pairwise lower bound on the performance,
introduced by the orthogonal approach.

e In the noiseless case, orthogonal invariant algorithms
are fully invariant; hence, their performance does not
depend on the mixing matrix; the lower bound is
purely numerical for i.i.d. source signals.

e In the i.i.d. noisy case, performance depends only on
the distribution of sources and on matrix o( A7 A)™?
which then characterizes the ‘hardness’ of source sepa-
ration. The lower bound has a very simple expression
(29) and does not depend on the distribution of the
sources.

Proofs have been only sketched but detailed calculations
are available upon request. We believe that further general
results could be obtained along the lines of this paper. In
particular, the dependence on O'(AH A)_1 may probably
be specified: for instance, expression (34) shows that the
linear term in o in Z,, depends on the (p, p)-th and (g, ¢)-
th entry of o(A¥ A)™'. Generalizing this would be more
informative than the general dependence outlined in this

paper.
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