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Abstract

This paper considers an application of blind identification to beamforming. The key point
is to use estimates of directional vectors rather than resorting to their hypothesized value.
By using estimates of the directional vectors obtained via blind identification i.e. without
knowing the arrray manifold, beamforming is made robust with respect to array deformations,
distortion of the wave front, pointing errors, etc ... so that neither array calibration nor
physical modeling are necessary. Rather surprisingly, ‘blind beamformers’ may outperform
‘informed beamformers’ in a plausible range of parameters, even when the array is perfectly
known to the informed beamformer.

The key assumption blind identification relies on is the statistical independence of the
sources, which we exploit using fourth-order cumulants. A computationally efficient technique
is presented for the blind estimation of directional vectors, based on joint diagonalization of
4th-order cumulant matrices; its implementation is described and performance is investigated

by numerical experiments.



1 Introduction

This paper 1s devoted to an application of blind identification to beamforming in the context of
narrow-band array processing. Let us first recall the standard linear data model, where an array
of m sensors receives waves emitted by n narrow-band sources. If s,(t) denotes the signal emitted
by the p-th source, its contribution to the array output can be written s,(¢)a, where a, is a fixed
m-vector acting, at the carrier frequency, as the spatial transfer function between the p-th emitting
source and the array. Denoting n(t) a possible additive noise, the array output x(¢) is given by

y(t) = Y sp(thay = As(t) ()

x(t) = y(t)+n() @)

In (1), we also use the customary matrix-vector notation where the m x n array matriz A has
vector a, as its p-th column and where the n x 1 vector s(¢) has the signal s,(t) in p-th position.
Each vector a, is called the directional vector associated to the the p-th source since it depends on
the direction (or on any relevant location parameters) of the source.

In the narrow-band context, the signal emitted by a spatially coherent source may be estimated
by forming the inner product between the array output and a m x 1 vector acting as a spatial
filter. The review paper [1] is a good introduction to various strategies for designing spatial filters
or ‘beamformers’. Denote f, the spatial filter designed to extract s,(¢), the signal of interest. The
simplest approach to coherently combine sensor outputs is to take f, = a,. However, beamforming
may take into account the other signals and the noise in order to design optimal filters. For instance,
if s,(t) is independent from the other contributions, the highest SNR at the filter output is obtained
by forming a MVDR (minimum variance distortionless response) filter which is proportional to

£, = R;'a, with R, E{x(t)x(t)*}. (3)

If the directional vectors associated to the other coherent sources are known, then one may also
constrain the spatial filter to cancel these interfering signals, leading to a LCMV (linear constrained
minimum variance) filter. Tn spatially white noise and for mutually independent source signals,
the LCMYV filter is easily found to be proportional to

f, = Rfa, with R, E{y()y()} (4)

where # denotes the pseudoinverse. Note that this filter can be computed without knowing the
directional vectors but the one corresponding to the signal of interest.

These two standard approaches — MVDR and LCMV — are based on the knowledge of the
directional vector associated to the desired signal and may be quite sensitive to errors in this
vector. Such errors may be due to unknown deformation of the array, drift in the electronic
hardware (calibration errors) or to multiple paths and/or wave reflexions in the vicinity of the
array (errors in modeling the propagation). Even if the array is perfectly known, pointing errors
cause performance degradation. Finally, performance is limited by the use in (3) or (4) of sample
statistics in place of the true covariances R, or R, which cannot be perfectly estimated with finite
sample size.

We propose to consider the use of estimated directional vectors in beamforming. Tt is the
purpose of this contribution to describe a blind identification technique allowing the directional
vectors to be estimated without knowing the array manifold, i.e. without physical modeling of the
propagation or array calibration. At first sight, such an aproach may appear paradoxical since the
array manifold is the link between the location of a source of interest and its associated directional
vector. Relevance of the blind identification to beamforming must then be given some discussion.

If the field contains only one coherent source, whose associated directional vector can be reliably
estimated in the blind fashion, then implementation of the spatial filters (3) or (4) is straightfor-
ward. There is a clear benefit in processing without the knowledge of the array manifold, since



‘blind” beamforming is, by essence, insensitive to errors in the manifold model. In presence of
several coherent sources though, the blind approach cannot stand by itself since it typically yields
the directional vectors associated to all sources. Unless one is interested in all the received signals
without discrimination, some additional processing is then necessary in order to select among the
estimated directional vectors those associated to the sources of interest. One approach is to form
beams corresponding to all the detected signals and select the signals of interest using ‘non-spatial’
information (spectral content, modulation, ...). Another approach is to select among the blindly
estimated directional vectors the closest to the directional vector predicted by physical modeling
which is a good guess if the array manifold is not too severely distorted and if the source position
is known in advance.

Blind identification techniques rely on the assumption of mutual independence of the source
signals received at a given time. The question of mutual independence deserves a specific discussion
in the context of blind array processing. First note that the assumption of independence between
sources is a statistically strong hypothesis but very plausible in practice for physically separated
emitters. Wave reflexions (or multiple paths) though, cause a single emitter to contribute by several
correlated wave fronts to the field impinging on the array. When these multiple paths correspond
to similar propagation delays, these waves are fully coherent. We stress that this circumstance
does not affect blind array processing, while it severely does so for parametric array processing.
This is because two fully coherent sources (say sources 1 and 2) correspond to proportional signals:
s1(t) = asa(t) with a some complex number. The combination of these signals at the array ouput
is s1(t)as + s2(t)as = s1(t)(a; + aaz) which is seen as a single source with a composite ‘directional’
vector a; + aas. This would be a problem for any method assuming that each independent
component is associated to some direction. The blind approach does not make any such assumption
since it does not deal with directions of arrival. In other words, through multiple propagation paths,
an ‘informed array’ sees several correlated sources, each with a directional vector corresponding to
its location, while a ‘blind array’ sees only one source (in the full coherence case) with a unique
composite ‘directional’ vector. Of course, the composite nature of this vector is irrelevant in the
blind approach, where it makes no difference. Hence, the term ‘directional vector’ is misleading
in the blind context and is not used in the following (except in the experimental section, where a
‘fair’ array is used).

We close these remarks by mentionning, anticipating a bit, that the columns of A are blindly
estimated up to a scalar factor. This is irrelevant in many applications; in particular such a factor
in a, does not change the SNR at the output of spatial filters like (3) or (4).

This paper is organized as follows. In section 2, the problem of blind estimation of the array
matrix A is stated together with the relevant statistical hypothesis. It is recalled that the array out-
put covariance determines A up to a unitary factor whose identification using 4th-order cumulants
is discussed in section 3. To this purpose, the notion of ‘joint diagonalization’ is introduced. With
this device, an efficient technique for blind identification is described in section 4, where related
approaches are also reviewed (see also subsections 3.1 and 3.2). The last section 5 investigates
performance in beamforming applications via numerical experiments.

2 Blind estimation of the array matrix

2.1 Blind identifiability

Before proceeding, it is important to specify the notion of blind identification. Since each source
contributes to the array output via the product s,(¢)a,, the observed process is unaffected by the
exchange of a complex scalar factor between each source signal s,(¢) and each vector a,. Also note
that the numbering of the sources is a pure notational convention but is otherwise immaterial.
These simple remarks show that, without additional a priori information, matrix A can be at best
identified up to permutation and scaling of its columns. More general considerations on blind
identifiability and indetermination can be found in [2].



Advantage can be taken of this indetermination to assume, without any loss of generality, that
the source signals have unit variance: E{[s,(¢)|*} =1 for 1 < p < n so that the dynamic range of
the sources 1s accounted for by the magnitude of the corresponding column of A. For independent
sources, we then have

R, def E{s(t)s(t)*} =1, sothat R, = AAT (5)

This normalization still leaves undetermined the ordering and the phases of the columns of A. The
following definition is then in order: Two matrices M and N are said to be essentially equal if it
erists a matriz P such that M = NP where P has exactly one non-zero entry in each row and
column, these entries having unit modulus. In this paper, blind identification of A is understood
as the determination of a matrix essentially equal to A, without A being parameterized.

2.2 Notations and assumptions

Our approach to blind identification exploits the fourth-order cumulants of the array output. For v
a complex d-dimensional random vector with coordinates vy, - - -, v4 and finite 4th-order cumulants,
we define a cumulant set denoted Q, as:

Q, E { Cum(vi, v}, vp,v7) | 1 < i, j, k1 < d}. (6)
For a complex stationary process v(t), we also denote Q, rather than Qy;) since the latter does
not depend on t. We assume
HO : The processes n(t), s1(t), -, sn(t) are joinily stationary.
The kurtosis of the p-th source is the real number

ky & Cum(s, (), 55(1), 5p(1), 55(1)). (7)

A source is said to be kurtic if it has a non zero kurtosis. We restrict ourselves to the case where:
H1 : There 1s at most one non kurtic source.

The crucial assumptions blind identification relies on are related to independence, exploited in
this paper by assuming non Gaussian signals. More specifically, we assume:
H2 : The vectors ay,---,a, are linearly independent but otherwise arbitrary.
H3 : The variables s1(t),- -, sn(t) are statistically independent for each t.

We will see that under H1-3, the array matrix A is essentially determined from R, and Q,.
For these quantities to be consistently estimated, it is further assumed that
H4 : There exist consistent estimates for R, and Q.

H5 : The additive noise is normally distributed and independent from the sources.
H6 : The additive noise is spatially white R, = o1, with unknown variance o and n < m.

By H5, an estimate of Q,, also is an estimate of Q, since cumulants are additive for independent
variables and since higher-order cumulants are zero for normally distributed variables. By H6, an
estimate of R, can be classically constructed from the eigendecomposition of an estimate of R,.
We insist that assumptions H4-6 could be replaced by any other assumption set serving the same
purpose: the existence of consistent estimates for R, and Q,,.

2.3 Using second-order information

We consider exploiting second order information by whitening the signal part y(¢) of the obser-
vation. This is done via a whitening matriz W, i.e. a n x m matrix such that Wy(t) is spatially
white. The whiteness condition is

I, = WR,WH = wAAHWH (8)



where the last equality stems from (5) and I, denotes the n x n identity matrix. Equation (8)
implies that W A is a unitary matrix: for any whitening matrix W, it then exists a unitary matrix
U such that WA = U. As a consequence, matrix A can be factored as

A=WHU = W#[uy, -, u,] 9)

where U is unitary. The use of second-order information — in the form of an estimate of R, which
is used to solve for W in (8) — reduces the determination of the m x n mixing matrix A to the
determination of a unitary n x n matrix U. The whitened process z(t) = Wx(t) still obeys a linear
model:

2(t) & Wx(t) = W(As(t) + n(t)) = Us(t) + Wn(t) (10)

The signal part of the whitened process now is a unitary mixture of the source signals. Note that
all the information contained in the covariance is ‘exhausted’ after the whitening, in the sense that
changing U in (10) to any other unitary matrix leaves unchanged the covariance of z(t).

3 Determining the unitary factor.

Two approaches for the determination of the unitary factor I/ in A = W#U have been reported.
In the first approach, U is computed as the diagonalizer of a n x n cumulant matrix. These ‘eigen-
2 cumulant statistics,
they may show poor statistical performance. Another approach obtains an estimate of U as the

based’ techniques are computationally simple but, being based only on n

optimizer of some identification criterion which is a function of the whole cumulant set Q,: better
performance is expected at the expense of solving an optimization problem. These approaches are
reviewed in the next two subsections; we then describe our technique which combines advantages
of both the eigen-based and the criterion-based approaches.

3.1 Approaches based on eigendecomposition

We consider cumulant matrices defined as follows. To any n xn matrix M is associated a ‘cumulant
matrix’ denoted Q. (M), defined entrywise by

def

N =Q.(M) ng = Z Cum(z;, 27, 2, 20 )me 1 <4, j <. (11)

k,i=1n

The (k, I)-th parallel cumulant slice is defined as the matrix whose (i, j)-th entry is Cum(z;, 2}, 2k, 2]').
It is seen to be equal to Q.(M) by taking M = b;b} where by denotes the n x 1 vector with 1
in k-th position and 0 elsewhere. Note that a cumulant matrix @,(M) may be seen as a linear
combination of ‘parallel cumulant slices’ with the entries of M as coefficients. For later use, we
define the ‘parallel set” NP as the set of all the parallel slices:

NP EHQ.(bybj)[1 < k1< n} (12)
Since z(t) obeys the linear model (10), the cumulant matrices take a simple form. Using the
cumulant properties — Gaussian rejection, additivity, multilinearity — it is straightforward to
establish that
Q:(M)= > k, uyMu, uyu; VM. (13)
p=1n

or equivalently

Q.(M)=UAyUT Ay ™ Diag(ky wiMuy, -k, w’Mu,,). (14)

From equation (14) stems the basic idea for eigen-based blind identification : any cumulant matrix
is diagonalized by U. Hence, the eigenvectors of a cumulant matrix, left multiplied by W# as



in (9) give the columns of A. Tt is worth noticing that the fundamental indetermination of blind
identification precisely corresponds to the indetermination of the eigendecomposition (provided the
spectrum is not degenerate).

The simplest implementation of this 1dea 1s for circularly distributed signals where

Q.(M)=F{z"Mz 22"} — R,MR, — R,Trace(MR,) VM (15)

as can be seen by inserting in (11) the expression of cumulants in term of moments. Then, in the
noiseless case R, = UR,U® = UUH = I, so that (15) gives Q.(I,,) = E{|z|*2z"} — (n + 1)1, Tt
follows that Q.(1,,) and the ‘weighted covariance’ F{|z|?zz*} have the same eigenvectors. Hence
U may be identified as the unitary diagonalizer of the latter, i.e. without even computing the full
cumulant matrix Q,(7,) [3]. If some noise is present though, expression (15) must be evaluated,
i.e. the corrective term Rf + R, Tr(R;) must be subtracted from the weighted covariance as shown
in [4] in the real case.

Unitary diagonalization of Q. (1) is not essentially determined though, if some eigenvalues are
identical. These eigenvalues, by (14), are kyusl,u, = ky|u,|* = k;, so that the case of degeneracy is
when some sources have identical kurtosis. Tt is suggested in [5] to diagonalize a linear combination
of cumulant slices that is to diagonalize @, (M) for some matrix M. The p-th eigenvalue of @, (M)
being kpuy Muy, degeneracy is very unlikely. This approach suffers two drawbacks. First, there
is no guideline as how to choose a priori the linear combination of cumulant slices or equivalently
as how to choose M before evaluating Q.(M). Second, such a technique uses only a fraction of
the fourth-order information: if one computes several randomly chosen cumulant matrices and
retains the one with the largest spectrum spread, the information contained in the other cumulant
matrices 1s lost.

3.2 Approaches based on optimization of cumulant criteria

Let V denote a n x n unitary matrix and further define e(¢), as in figure 1,
e(t) E VHg(t) = VIUs(t) + VEWn(t). (16)

If V= U then VHU = I, and the coordinates of e(t) are the (noise corrupted) source signals.

S(t) A y(t) X(t) W Z(t) vH e(t)

mXxn n(t) nxm nxXn

Figure 1: Inverting A by chaining a whitener and a unitary matrix.

More generally, if V' is essentially equal to U, the coordinates of e(t) are the phase-shifted source
signals, possibly permuted and corrupted by additive Gaussian noise, so that their higher-order
cross-cumulants are zero.

It has then been proposed to determine U as the unitary minimize of the sum of all the squared
cross-cumulants in Q.. Since the sum of the squared cross-cumulants plus the sum of the squared
auto-cumulants of Q. does not depend on V as long as V is kept unitary, this is equivalent to
mazimizing under unitary constraint the criterion [6]:

CV)E ST [Cumles, e eq, el (17)
i=1,n

This criterion first appeared in [7] where it is obtained via a 4th-order Gram-Charlier expansion of
the likelihood function. Very interestingly, Comon [6] arrives at the same criterion by a different



approach based on contrast functions, which is reminiscent of [8]. Comon also describes an algo-
rithm for maximizing (17) via products of Givens rotations. Unfortunately, the Givens angles at
each step cannot be obtained in closed form in the complex case.

We propose to determine U as the unitary maximizer of the criterion ¢(V):

(V) N [Cumies €} ex €| (18)

ik I=1n

which 1s equivalent to minimizing the sum of the squared cross-cumulants with distinct first and
second indices. The main reason for considering criterion (18) is its link to underlying eigenstruc-
tures which allows for an efficient optimization of it by the mean of ‘joint diagonalization’.

3.3 Joint diagonalization

Let N'= {N,|1 < r < s} be a set of s matrices with common size n x n. A joint diagonalizer of
the set A is defined as a unitary maximizer of the criterion

def

CV, )= > |diag(VF N, V)? (19)

r=1,s

where |diag(.)| is the norm of the vector build from the diagonal of the matrix argument. When
the set A contains only one hermitian matrix, joint diagonalization is equivalent to usual unitary
diagonalization. If the set A cannot be exactly jointly diagonalized (this is the case when sample
cumulants are processed), the unitary maximization of (19) defines a somewhat arbitrary but quite
natural ‘joint approximate diagonalization’.

The link between optimization-based and eigen-based blind identification techniques is estab-
lished by considering the joint diagonalization of several cumulant matrices. In particular:

Proposition 1 For any unitary matriz V, o(V) = C(V,N7?),

which means that the unitary maximization of ¢(V) is equivalent to the joint diagonalization of
the parallel set. Blind identifiability via joint diagonalization is guaranteed by

Proposition 2 Under H1-3, a joint diagonalizer of NP is essentially equal to U.

Proofs of these propositions are skecthed in appendix B.

Joint diagonalization corresponding to usual diagonalization when only one hermitian matrix is
involved, it 1s no surprise that the Jacobi technique can be extended to the joint diagonalization of
several matrices. This extension is described in appendix A and offers a computation cost which is
roughly s times the cost of diagonalizing a single matrix. In addition, for the particular problem at
hand, this cost can be further reduced by initializing the joint diagonalizer with the unitary matrix
returned by the (ordinary) diagonalization of a single cumulant matrix. A convenient choice is to
diagonalize some @,(M) where M is a random hermitian matrix, because then matrix Q. (M) also
is hermitian.

3.4 Representation of the 4th-order cumulants by eigenmatrices

The computational efficiency of joint diagonalization can be further increased by downsizing N7
to a smaller set made of the significant ‘eigenmatrices’ of Q.

Proposition 3 For any d-dimensional complex random vector v with Jth-order cumulants, there
exist d® real numbers Ay, ---, A2 and d* matrices My, ---, Mg, called eigenmatrices verifying

Qu(M,) = M, Tr(M,MIy=6(r5) 1<rs<d. (20)



The proof is straightforward by a classic ‘stacking-unstacking’ device : the relation N = Q, (M) is
put in vector-matrix form N = QM by mapping the d x d matrices N and M into d? x 1 vectors
N and M and by mapping the set Q, into a d? x d? matrix. The simplest mapping is defined
entrywise, for 1 < a,b < d?, by

Na = nyj, Ma:mlj, Qab C’um(vl,v v, v3), with a=i+(j—1d, b=k+({-1)d (21)

Matrix Q is easily checked to be hermitian. It then admits a set of d? real eigenvalues Aq,---, A
and d? corresponding eigenvectors whose unstacking as in (21) yields the eigenmatrices. Eigenma-
trices inherit the orthonormality property from the eigenvectors. The same results can be arrived
at using a Kroneker product formulation as in [9].

The eigen-structure of Q. derives from (13). Tt is readily checked that the set {u,uj[l <
p, ¢ < n} verifies the properties of proposition 3. Orthonormality of the matrices in this set stems
from U being unitary and by substitution into (13), one finds that Q.(u,uy;) = kpuyuy; while
Q:(uyuy) = 0 for p # q. Hence the spectrum of @), is made of n(n — 1) zero eigenvalues and n
eigenvalues equal to the kurtosis of the sources, (a similar device has been proposed in [10] for
detecting the number of kurtic sources). With the notations of proposition 3 and after ordering
the eigenvalues by decreasing order of magnitude, we define the eigen-set of Q. as the matrix set :

NCE M1 <r<n) (22)
For our purpose, the eigen-set contains the relevant 4th-order information, since we have:
Proposition 4 Under H0-3, for any unitary matriz V, (V) = C(V, N°©).

This reduced set of n matrices (rather than n? in A'P) together with the extended Jacobi technique
makes the maximization of ¢(V') computationally attractive.

4 Blind identification algorithms

4.1 The JADE algorithm

A blind identification algorithm by Joint Approximate Diagonalization of Eigen-matrices (JADE)!
can now be described by the following steps.

Step 1. Form the sample covariance R, and compute a whitening matrix w.

Step 2. Form the sample 4th-order cumulants Q. of the whitened process z(t) = Wx(t); compute
the n most significant eigenpairs {5\,«, M,|1<r<n}.

Step 3. Jointly diagonalize the set A¢ = {LM,«H < r < n} by a unitary matrix U.

Step 4. An estimate of A is A=WH#D.

Some comments are in order about these successive steps.

Step 1 i1s concerned with 2nd-order statistics and is standard under H5-6 ; it is implemented
via eigendecomposition of R,. Thanks to the white noise assumption, an estimate & of the noise
variance is the average of the m — n smallest eigenvalues of R.. Denote 1, -+, b the n largest
eigenvalues and hy,--- h, the corresponding eigenvectors of Re. A whitener is W = [(p1 —
o) Py, (e — ) 1/2h 2] . We do not address the important issue of detecting the number
n of sources.

In step 2, computation of the eigenmatrices amounts to diagonalizing a n? x n? matrix made
from the elements of Q.. A standard algorithm for eigendecomposition of hermitian matrices will
perfectly do, but more efficient implementations can also be devised, by taking into account addi-
tional cumulant symmetries or the fact that only the n most significant eigenpairs are needed [11].
Recall that computation of the eigenmatrices may be bypassed if, for simplicity, joint diagonal-
ization is performed on the parallel set A?. An even simpler implementation is to form a set

2

1A Matlab implementation of JADE is available upon request or by anonymous FTP at sig.enst.fr.



N = {Q.(C/)|]1 < r < s} (possibly using the sample counterpart of (15)), where the C,’s are s
arbitrary matrices in arbitrary number. Of course, identifiability cannot be guaranteed a prior:
and performance may be significantly lower than when A¢ or A'? are used.

Step 3 is implemented by extending the single-matrix Jacobi technique to several matrices as
described in appendix A. Note that when n = 2, the Jacobi technique is not iterative: a unique
Givens rotation achieves (joint) diagonalization. Also recall that joint diagonalization may be
initialized with the (usual) diagonalizer of a single cumulant matrix.

In step 4, the pseudo-inverse of W needs not be explicitly computed: the eigendecomposition
of R, may be recycled by W# = [(u1 — &)"/*hy, -, (o — 6)'/*h,,).

4.2 Related approaches

Besides the papers [3, 4, 5, 6, 7, 8] already mentioned in section 3, other contributions are related
to blind identification of the model (1,2).

First note that this ‘instantaneous spatial mixture’ may be seen as a special case of more general
spatio-temporal mixtures; in particular, blind identification techniques designed in the framework
of multichannel ARMA modeling could be applied, provided they are extended to the complex case.
See for instance the cumulant-based approach in [12, 13] and [14] for an adaptive approach. At
the other extreme, stand purely temporal mixtures and the blind deconvolution problem, showing
a structure similar to the purely spatial problem. For instance, the blind deconvolution techniques
in [15] closely parallels the unitary maximization of (17) or the ‘reverse criterion’ of [10]. Similarly,
the CMA algorithm [16] may be implemented in a spatial version [17].

Blind identification may be based on higher-order cumulants only (hence without second-order
prewhitening), with the benefit that consistent estimation is possible without modeling the spatial
structure of the noise as long as it is independent and normally distributed. The references [10,
13, 18, 19, 20] specifically considers the spatial problem.

Blind identification of model (1,2) is closely related to the ‘source separation’ problem since the
latter consists in finding a ‘separating matrix’ B such that the coordinates of Bx(t) are the source
signals (up to the usual indeterminations), possibly corrupted by noise. Adaptive solutions may
be based on cumulant criteria as in [21, 22, 14]. More generally, statistical independence at the
output of a separating matrix (in the noiseless case) may be exploited by adapting B using non-
linear functions of its output. A seminal paper is [23], which deals with real signals; see also [24, 25].
For 1.i.d. source signals with known, differentiable probability densities, the maximum likelihood
approach of [26] provides asymptotically optimal estimates in the noiseless case.

Finally, simple solutions can also be implemented if the model (1,2) holds with temporally
correlated source signals, in which case non normality of sources is no longer necessary. The
approach of section 3.1 may be followed, by diagonalizing a correlation matrix E{z(t + 7)z(t)*}
rather than a cumulant matrix. This was independently proposed in [24] and in [27]. As with
cumulant matrices, indetermination problems may occur and several correlation matrices (i.e. for
various 7) may be jointly diagonalized for the sake of robustness as shown in [28]. A necessary
identifiability condition is that the source signals have different spectra. A safe approach may
consist in the joint diagonalization of a set made of cumulant matrices and of correlation matrices.

5 Application to beamforming

5.1 Performance index

Applicability of these results to beamforming is now investigated. Denote fp an estimate of a
spatial filter computed from 7" data samples when p is the signal of interest. The estimated signal

; £rx(t) = > sy(t) fra, +£n(t) (23)

g=1n

(1) =



which contains the ¢-th signal with power |f;aq | and the noise with power a|f,|2. We consider for
any p and ¢ the performance indices

ISRy, & E {|;a,|’} and INSR, ¥ E{

Tyl + Yoz lf;‘aqlz} (o)

|f;ap|2

where the expectation is taken over realizations of T" samples.

The first index is a pairwise Interference to Signal Ratio (ISR) measuring the rejection of the ¢-
th source into the estimate of the p-th signal. It is actually a ratio since it is implicitely normalized
by the convention (5) which implies that ISR,, = é(p, ¢) if fp =f, = Rfap. This index is used
here to characterize the performance of LCMYV filters since these are supposed to perfectly reject
all the coherent jammers (i.e. the signals s,(t) for ¢ # p). The second index is the natural measure
of performance for the MVDR beamformer.

We call ‘“informed beamformers’ the filters fp computed according to (3) or (4) using the true
value of the directional vector a,. We call ‘blind beamformers’ the same filters computed using the
blind estimate of a, given by JADE. We refer to these filters by the obvious acronyms IMVDR,
ILCMV, BMVDR and BLCMV.

In both cases, the sample statistics R, or Ry are used. To be specific, the sample covariance is
estimated by R, = Zt:LT x(1)x(t)*. To estimate Rf, the sample covariance is eigendecomposed

into Rx =3 1 m Mrh-hl An estimate 6 of the noise variance is the average of the m—n smallest

eigenvalues. Ofter ordering of the eigenpairs, we form Rf = ZT:LH (r — )" 'h,hi.

5.2 Numerical experiments

A first series of experiments is intended to compare blind versus informed beamformimg, to de-
termine to which extent our cumulant based approach can accommodate significant noise levels
and to get some indications as how this depends on the relevant parameters. We consider a linear
A/2 equispaced array of m unit-gain omnidirectional sensors and assume plane wave fronts. For
convenience, we maintain the convention that the actual amplitude of each source is included in
the corresponding directional vector. Thus, vector a, takes the form a, = 011,/ Za(qbp) where o), is
referred to as the power of the p-th source; ¢, € [—%, %] is the ‘electric angle’, it depends on the
physical location of the p-th source; finally, the I-th coordinate of vector a(¢) is exp(2jwlp). The
experiments are conducted with temporally white signals, with s,(¢) uniformly distributed on the
unit circle for all p and ¢; the sample size is T'= 100 for an array of m = 10 sensors.

Figures 2 to 4 have been obtained by averaging over N = 500 Monte Carlo runs. They obey
an identical format: each figure shows blind and informed performance variation with respect
to two parameters; the horizontal axis corresponds to the variation of one parameter; the other
parameter takes 3 different values. Thus, each panel shows 3 solid lines corresponding to a blind
beamformer and 3 dashed lines corresponding to a informed beamformer. Dotted lines have also
been added for ease of reference, as follows: the left panel displays empirical values of ISRy5 for
BLCMV (solid) and TLCMV (dashed), and the dotted line is the reference level 1/T7; the right
panel displays empirical values of INSR; for the BMVDR (solid) and for the IMVDR (dashed)
and the dotted lines give the best theoretical value, i.e. the value for the filter (3) with perfect
knowledge of the directional vector and of the covariance R,. The curves need not be labelled:
as expected performance decreases with increasing noise, decreasing source separation or source
powers. Figure 2 shows the influence of noise level ¢ in dB for 3 different source configurations:
¢1 = 0 and ¢5 = 0.02, 0.05, 0.1. Source levels are oy = 05 = 0 dB. Figure 3 shows, for three
different noise levels ¢ = —15, —5, 5 dB, the influence of source separation: the first source is
kept at ¢1 = 0 while the second source is moved in the main lobe of the first one by varying ¢-.
Source levels are o1 = 02 = 0 dB. Figure 4 shows the influence of the level o4 of the second source,
considered as a ‘jammer’. The noise level is kept at ¢ = —5 dB and the source locations are ¢; = 0
and ¢o = 0.05. The triples of curves are obtained by letting oy = —10, 0, 10 dB.
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Figure 2: 1SR4 (left) and INSR; (right) versus noise level o.

The main conclusion to be drawn from these figures is that blind beamforming performs better
than informed beamforming as long as the situation is ‘not too hard’ (poor conditioning of A).
This is an instance of a more general statement that covariance based techniques better resist to
significant noise levels (regardless of the noise distribution) than techniques involving higher order
statistics. In the case of interest, the benefit of consistent blind estimation is traded for potential
higher variance at poor SNRs. However it 1s a striking feature shown by these plots that, not
only does the blind performer perform better than the informed one at high SNRs, but that it
does so with a small 7" = 100 sample size even down to moderately low SNRs, depending on the
parameters governing the ‘hardness’ of the task, such as source closeness. In fig. 2 for instance,
blind advantage is maintained up to ¢ > 5 dB for ¢2 — ¢1 = 0.1 (this is the easiest case, where the
directional vectors are orthogonal). Another striking feature, seen in figure 2 for instance, is that
the ISR level tends to the same limit as o goes to zero for various values of ¢5 — ¢1. This limit, as
given by figure 2, is 1/T for the informed beamformer and is 6 dB lower for the blind beamformer.
Performance of blind beamforming should also be studied as a function of the distribution of the
source signals. In this respect, the 6 dB advantage observed with constant modulus sources is not
expected to hold for other distributions (see below an illustration in the real case).

We have no complete explanation to why blind beamforming may perform better than informed
beamforming. We cannot but acknowledge that errors in the estimate of R, induce errors in a,
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Figure 3: ISRy (left) and INSR; (right) versus source separation ¢o — ¢1.

which appear to be ‘nicely’ correlated and partially cancel when the BLCMYV filter f, = Rfép 18
computed. No such thing happens when the true, fixed directional vector a, is used together with
an estimate of Rf to form the ILCMYV filter fp = Rfap.

Next, we illustrate the benefit of jointly diagonalizing several cumulant matrices by comparing
the performance of the JADE technique with the simulation results published in [5], where the
mixing matrix is estimated by diagonalizing an unspecified linear combination of cumulant slices.

In this example, matrix A is a real 4 x 3 matrix, the i.1.d. sources follow a one-sided exponential
distribution and the noise level is ¢ = 20 dB. Table 1 shows the JADE RMS error for each entry of
A, evaluated over 100 realizations of 7' = 7000 samples. This table can be compared with table 1
of [5]. The extra bottom line is the column-wise RMS error (square root of the sum of the squared
entries of the given column); it shows an even distribution of the errors through all columns. For
ease of reference, we have computed the corresponding line from [5]; it is [0.0213 0.0650 0.1365]
which has a smaller first entry than in table 1 but larger next entries. The overall RMS (square
root, of the sum of the squared column-wise RMS errors) is computed to be 0.0654 through joint
diagonalization and 0.1527 through ordinary diagonalization of [5]. Hence, in this example, joint
diagonalization achieves a better overall performance and it does so with a ten times smaller
sample size. Of course, this is only indicative since a better choice of the single cumulant matrix
to be diagonalized may improve the performance reported in [5]. Tt is worth reporting that an
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Figure 4: ISRy (left) and INSR; (right) versus jammer level.

exponential distribution does not seem to be very favorable to blind identification: in the same
experiment conducted with binary sources, the JADE technique achieves an overall RMS value of
0.051 with 7" = 700 samples; entrywise RMS appears in table 2.

Conclusion

Joint diagonalization of cumulant matrices allows the whole 4th-order cumulant set to be processed
with a computational efficiency similar to eigen-based techniques. The resulting blind identification
scheme (JADE) has been applied to narrow band beamforming. Tn this application, directional
vectors are blindly estimated rather than modeled via a (possibly problematic) array manifold,
making the blind technique insensitive to array mismatch and pointing errors. Numerical simula-
tions show that, in a significant range of parameters, blind beamforming may outperform informed
beamformers (whose performance is limited by finite sample size) even when the latters use the
true directional vector. This rather surprizing fact should be theoretically supported by asymptotic
performance analysis of the JADE estimator.
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RMS errors
0.0149 | 0.0153 | 0.0173
0.0162 | 0.0170 | 0.0179
0.0196 | 0.0229 | 0.0229
0.0194 | 0.0216 | 0.0194

[0.0353 ] 0.0389 [ 0.0390 |

Table 1: Entrywise and columnwise RMS error in A in a 4 x 3 example. JADE algorithm with
T = 7000 samples and one-sided exponentially distributed sources.

RMS errors
0.0150 | 0.0083 | 0.0133
0.0168 | 0.0102 | 0.0122
0.0088 | 0.0176 | 0.0229
0.0194 | 0.0134 | 0.0109

[0-0310 [ 0.0258 | 0.0311 |

Table 2: Entrywise and columnwise RMS error in A in a 4 x 3 example. JADE algorithm with
T =700 samples and binary sources.

Appendix A: A joint diagonalization algorithm.

The Jacobi technique [29] for diagonalizing a unique hermitian matrix is extended for the joint
approximate diagonalization of a set A" = {N,|1 < r < s} of arbitrary n x n matrices. It consists in
minimizing the diagonalization criterion (19) by successive Givens rotations. We start by describing
the 2 x 2 case and we denote

a, by
e b @
forr=1,...,s5. A complex 2 x 2 Givens rotation is
cos f —el?sind
V= [ e 1%5ind cosf ] ’ (26)

Denoting a’,, b, ¢! and d’. the coefficients of V# N,V optimization of (19) amounts to finding 6
and ¢ such that y_ |al|* + |d.|* is maximized. Note that 2(|al|? + |a,|?) = |a, — d.|* + |a, + d..|?
and that the trace al. + d.. is invariant in a unitary transformation, maximization of criterion (19)

1s equivalent to maximization of Q):

QE Y oy —dif? (27)
It is easily checked that
a, —d. = (a, — d,) cos 20 + (b, + ¢,)sin 20 cos ¢ + j(c, — b, )sin 20 sin ¢ (28)
for r=1, ..., s. Then by defining the vectors
w E g~ dy -] (29)
v 2 [cos 26, sin 20 cos ¢, sin 20 sin ¢]” (30)
g ¥ Jar—dp, b+ cr, (e —b,)]T (31)
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the s equations (28) may be written in the form u = Gv where GT def [g1,- -, gs] so that @ also
reads

Q=u"u=v"G"Gv =" Real(GF G)v (32)

where we have used that, GG being hermitian by construction, its imaginary part is anti-
symmetric, hence contributing nothing to the above quadratic form. The last step is to recog-
nize that the particular parameterization (30) of v is equivalent to the condition v"v = 1. Thus
the optimal v is the eigenvector of Re(GT () associated to the largest eigenvalue, which is eas-
ily computed for a real 3 x 3 symmetric matrix. Further, the entries of the Givens rotation can
computed from the coordinates of » without even using trigonometrics as in the standard Jacobi
technique [29].

Appendix B : Proofs

In order to prove propositions 1 and 4, we establish a more general lemma.

Lemma. For any set {B.|1 < r < n?} of orthonormal n x n matrices, the identity ¢(V) =
C(V,{Q.(B)|1 < r < n?}) holds for any unitary matriz V = [vq,---,v,].

Proof: by the following chain of identities.

CVAQ:(BHIL<r<n®}) = Y ViQu(Bvil” 2 Y [Trace(B.Q.(vivi))I”

1,7 1,7
3 4 5 6
= NQvivilllie = D IViQa(vivivil* = Y [Cum(ex, ef e, ¢f)|* = (V)
7 ikl i,k

Equality 1 is a rewriting of the joint diagonalization criterion. Equality 2 is an instance of the
identity v*Q.(B)v = Trace(BQ.(vv*)) resulting, for any matrix B and vector v, from defini-
tion (11). The matrix sets {BH |1 < r < n?} and {v,v;|1 < k,I < n} are two orthonormal basis
for the space of n X n matrices; expressing the Frobenius norm of @ (v, v}) onto each of these two
sets yields equalities 3 and 4 respectively. Equality 5 comes by the multilinearity of the cumulants
using e; = v;z. Finally, 6 uses the cumulant symmetries.0
Proof of proposition 1. Using the lemma, since {(b;b})|1 < k,! < n} is an orthonormal set.O
Proof of proposition 2. We state without proof the following simple property. If N is a set of
s matrices in the form N' = {M,|M, = VA, VT 1 <r < s} where each A, is diagonal and V is
unitary, and lff/ is joint diagonalizer of N, then matriz VHEM,V is diagonal for any M, in N.
Thus, if Visa joint diagonalizer of AP each matrix TN/HQZ (ble)f/ is diagonal. By linearity of @,
this is also true for any linear combination of the matrices b;bj and we conclude that VH Q. (N )f/
is then diagonal for any matrix N. Of course this property holds for V=U ; we have to establish
that it holds only if U is essentially equal to U.

Assume first that all the sources are kurtic and set N = szl’ WPk 1upu;;. The eigenvalues of
Q. (N), which are 1, -- -, n according to (13), are distinct indeed so that the unitary diagonalizer of
Q. (N) is essentially unique and then essentially equal to U. Second if one source has a zero kurtosis,
we set its contribution in N to zero so that @Q,(N) now has the first n integers as eigenvalues but
for one which 1s zero. These are distinct numbers and the conclusion still holds.O
Proof of proposition 4. In text.
Proof of proposition 3. Apply the lemma with the orthonormal basis {M,|1 < r < n?} made of
the eigenmatrices of Q.. These verify Q,(M,) = A M, for 1 < r < n? but under H0-3, there are
at most n non zero eigenvalues. Discarding n(n — 1) matrices A, M, with A, = 0 does not affect
criterion (19) and yields the eigen-set.0
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