Brain Science Institute WELCOME !

Japan RIKEN Brain Science Institute Our Research Group Amari Research Unit

web our site

Email:

 

Address:

BSI RIKEN ABSP Lab
2-1, Hirosawa,
Wako Saitama,
351-0198 JAPAN
Tel: +81-48-467-9668
Fax: +81-48-467-9686

Original Papers in Journals
RECENT TOPICS

Human-Robot Interaction and Interfaces
One of our affective BCI project was nominated to the Annual BCI Research Award 2011
Our BCI projects on international TV news

RIKEN Podcast

RIKEN BSI NEWS
December 2006
[English]

[Japanese]

A Brief Guide for TDALAB Ver 1.0 [PDF]

ICALAB for Signal Processing ver. 3.0
DOWNLOAD

NMFLAB for Signal Processing ver 1.2
DOWNLOAD

Guidebook of NMFLAB for signal processing [PDF]

FAQ, Tips & Tricks
for ICALAB


MLSP Benchmarks Competition
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2015
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. C Caiafa, A Cichocki Stable, Robust, and Super Fast Reconstruction of Tensor Using Multi-Way Projections. IEEE Trans. Signal Processing, 63(3), 780-793, (2015).[bibtex]


  2. L Chen, J Jin, Y Zhang, X Wang, A Cichocki A Survey of the Dummy Face and Human Face Stimuli Used in BCI Paradigm. Journal of Neuroscience Methods, 239, 18-27, (2015).[bibtex]


  3. A Cichocki, D Mandic, C Caiafa, A-H Phan, G Zhou, Q Zhao, L De Lathauwer Tensor Decompositions for Signal Processing Applications. From Two-way to Multiway Component Analysis. IEEE Signal Processing Magazine, 32(2), 145-163, (2015).[bibtex]


  4. A Cichocki, S Cruces, S Amari Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences. Entropy, 17(5), 2988-3034, (2015).[bibtex]


  5. G Esposito, S Valenzi, T Islam, C Mash, M-H Bornstein Immediate and selective maternal brain responses to own infant faces. Behavioural Brain Research, 278, 40-43, (2015).[bibtex]


  6. E Gallego-Jutgla, J Sole-Casals, F Vialatte, M Elgendi, A Cichocki, J Dauwels A hybrid feature selection approach for the early diagnosis of Alzheimer's disease. Journal of Neural Engineering, accepted, (2015).[bibtex]


  7. K Hiyoshi-Taniguchi, M Kawasaki, T Yokota, H Bakardjian, H Fukuyama, A Cichocki, F Vialatte EEG Correlates of Voice and Face Emotional Judgments in the Human Brain. Cognitive Computation, 5(2), online, (2015).[bibtex]


  8. J Jin, E Sellers, S Zhou, Y Zhang, X Wang, A Cichocki A P300 Brain-Computer Interface Based on a Modification of the Mismatch Negativity Paradigm. International Journal of Neural Systems, 25(3), 1550011(12), (2015).[bibtex]


  9. P Jurica, S Valenzi, Z Struzik, A Cichocki Methods for Transition Toward Computer Assisted Cognitive Examination. Methods of Information in Medicine, 54, 256-261, (2015).[bibtex]


  10. P Jurica Multifractal analysis for all. Frontiers in Physiology, 6(27), online, (2015).[bibtex]


  11. N Lee, A Cichocki Regularized Computation of Approximate Pseudoinverse of Matrices Using Low-Rank Tensor Train Decompositions. CoRR, arXiv:1506.01959, (2015).[bibtex]


  12. J Li, Z Struzik, L Zhang, A Cichocki Feature Learning from Incomplete EEG with Denoising Autoencoder. Neurocomputing, accepted, (2015).[bibtex]


  13. B Li, G Zhou, A Cichocki Two Efficient Algorithms for Approximately Orthogonal Nonnegative Matrix Factorization. Signal Processing Letters, 22(7), 843-846, (2015).[bibtex]


  14. Y Liu, Q Zhao, L Zhang Uncorrelated Multiway Discriminant Analysis for Motor Imagery EEG Classification. International Journal of Neural Systems, 25(4), 1550013, (2015).[bibtex]


  15. J Ma, Y Zhang, A Cichocki, F Matsuno A Novel EOG/EEG Hybrid Human-Machine Interface Adopting Eye Movements and ERPs: Application to Robot Control. IEEE Trans. Biomed. Engineering, 62(3), 876-889, (2015).[bibtex]


  16. Y Nam, B Koo, A Cichocki Glossokinetic Potentials for Tongue-Machine Interface. IEEE SMC Magazine, 59(1),, (2015).[bibtex]


  17. A-H Phan, P Tichavsky, A Cichocki Tensor Deflation for CANDECOMP/PARAFAC-Part I: Alternating Subspace Update Algorithm. IEEE Transactions on Signal Processing, 63(22), 5924-5938, (2015).[bibtex]


  18. A-H Phan, P Tichavsky, A Cichocki Tensor Deflation for CANDECOMP/PARAFAC-Part II: Initialization and Error Analysis. IEEE Transactions on Signal Processing, 63(22), 5939-5950, (2015).[bibtex]


  19. A-H Phan, P Tichavsky, A Cichocki Rank Splitting for CANDECOMP/PARAFAC. Lecture Notes in Computer Science, 9237, 21-40, (2015).[bibtex]


  20. T Rutkowski, H Mori Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users. Journal of Neuroscience Methods, accepted, (2015).[bibtex]


  21. T Rutkowski, K Shimizu, T Kodama, P Jurica, A Cichocki Brain-Robot Interfaces Using Spatial Tactile BCI Paradigms. Lecture Notes in Computer Science, 9359, 132-137, (2015).[bibtex]


  22. A Sarmiento, I Duran-Diaz, A Cichocki, S Cruces A Contrast Function Based on Generalized Divergences for Solving the Permutation Problem in Convolved Speech Mixtures. IEEE/ACM Transactions on Audio, Speech & Language Processing, 23(11), 1713-1726, (2015).[bibtex]


  23. F Super, U Tensor, P Multi-Way Stable, Robust, and Super. IEEE Trans. Signal Processing, (2015).[bibtex]


  24. K Xie, Z He, A Cichocki Convergence Analysis of the FOCUSS Algorithm. Neural Networks and Learning Systems, 26(3), 601-613, (2015).[bibtex]


  25. T Yokota, Q Zhao, C Li, A Cichocki Smooth PARAFAC Decomposition for Tensor Completion. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), submitted, (2015).[bibtex]


  26. T Yokota, R Zdunek, A Cichocki, Y Yamashita Smooth Nonnegative and Tensor Factorizations for Robust Multi-way Data Analysis. Signal Processing, 113, 234-249, (2015).[bibtex]


  27. T Yu, J Xiao, F Wang, R Zhang, Z Gu, A Cichocki, Y Li Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback. IEEE Transactions on Biomedical Engineering, 62(7), 1706-1717, (2015).[bibtex]


  28. R Zdunek, AH Phan, A Cichocki Image Classification with Nonnegative Matrix Factorization Based on Spectral Projected Gradient. Artificial Neural Networks, 31-50, (2015).[bibtex]


  29. Y Zhang, G Zhou, J Jin, X Wang, A Cichocki SSVEP recognition using common feature analysis in brain-computer interface. Journal of Neuroscience Methods, 244, 8-15, (2015).[bibtex]


  30. Y Zhang, G Zhou, J Jin, X Wang, A Cichocki Optimizing Spatial Patterns with Sparse Filter Bands for Motor-imagery Based Brain-Computer Interface. Journal of Neuroscience Methods, 225, 85-91, (2015).[bibtex]


  31. Y Zhang, G Zhou, J Jin, Q Zhao, X Wang, A Cichocki Sparse Bayesian Classification of EEG for Brain-Computer Interface. IEEE Transactions on Neural Networks and Learning Systems, PP(99), 1, (2015).[bibtex]


  32. Q Zhao, L Zhang, A Cichocki Bayesian Sparse Tucker Models for Dimension Reduction and Tensor Completion. CoRR, arXiv:1505.02343, (2015).[bibtex]


  33. Q Zhao, L Zhang, A Cichocki Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1751-1763, (2015).[bibtex]


  34. G Zhou, A Cichocki, S Xie Decomposition of Big Tensors With Low Multilinear Rank. CoRR, arXiv:1412.1885, (2015).[bibtex]


  35. G Zhou, A Cichocki, Q Zhao, S Xie Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness. IEEE Transactions on Image Processing, 24(12), 4990-5003, (2015).[bibtex]


  36. G Zhou, A Cichocki, Y Zhang, D Mandic Group Component Analysis for Multi-block Data: Common and Individual Feature Extraction. IEEE Transactions on Neural Networks and Learning Systems, (2015).[bibtex]


  37. G Zhou, Q Zhao, Y Zhang, T Adali, S Xie, A Cichocki Linked Component Analysis from Matrices to High Order Tensors: Applications to Biomedical Data. Proceedings of IEEE, (2015).[bibtex]


2014
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. F Cong, G Zhou, P Astikainen, Q Zhao, Q Wu, A Nandi, J Hietanen, T Ristaniemi, A Cichocki Low-Rank Approximation Based Non-Negative Multi-Way Array Decomposition On Event-Related Potentials. International Journal of Neural Systems, 24(8), 1440005 (19 pages), (2014).[bibtex]


  2. K Hiyoshi, N Oishi, C Namiki, J Miyata, T Murai, A Cichocki, H Fukuyama The Uncinate Fasciculus as a Predictor of Conversion from aMCI to Alzheimer Disease. Journal of Neuroimaging, 25(5), 748-753, (2014).[bibtex]


  3. J Jin, I Daly, Y Zhang, W Xingyu, A Cichocki An optimized ERP Brain-computer interface based on facial expression changes. Journal of Neural Engineering, 11(3), 36004, (2014).[bibtex]


  4. N Lee, A Cichocki Big Data Matrix Singular Value Decomposition Based on Low-Rank Tensor Train Decomposition. Lecture Notes in Computer Science 8866 Advances in Neural Networks, 121-130, (2014). [bibtex]


  5. J Li, R Semenyuk, P Ratmanova, D Napalkov, A Cichocki Source localization and synchronization analysis on EEG recorded from professional shooters and novices: A comparison study. International Journal of Psychophysiology, 94(2), 256-257, (2014).[bibtex]


  6. J Li, A Cichocki Deep Learning of Multifractal Attributes from Motor Imagery Induced EEG. Lecture Notes in Computer Science 8834 Neural Information Processing, 503-510, (2014). [bibtex]


  7. Y Nam, B Koo, A Cichocki, S Choi GOM-Face: GKP, EOG, and EMG-Based Multimodal Interface with Application to Humanoid Robot Control.. IEEE Transactions on Biomedical Engineering, 61, 453-462, (2014).[bibtex]


  8. Y Tomita, F Vialatte, G Dreyfus, Y Mitsukura, H Bakardjian, A Cichocki Bimodal BCI using simultaneously NIRS and EEG. IEEE Transactions on Biomedical Engineering, (99), accepted, (2014).[bibtex]


  9. S Valenzi, T Islam, P Jurica, A Cichocki Individual Classification of Emotions Using EEG. Journal of Biomedical Science and Engineering, (7), 604-620, (2014).[bibtex]


  10. Y Washizawa, T Yokota, Y Yamashita Multiple kernel learning for quadratically constrained MAP classification. IEICE transactions on Information and Systems, 97(5), 1340-1344, (2014).[bibtex]


  11. T Yokota, A Cichocki Linked Tucker2 Decomposition for Flexible Multi-block Data Analysis. Lecture Notes in Computer Science 8468 Neural Information Processing, 111-118, (2014). [bibtex]


  12. R Zdunek, A Cichocki, T Yokota B-Spline Smoothing of Feature Vectors in Nonnegative Matrix Factorization. Lecture Notes in Computer Science 8468 Artificial Intelligence and Soft Computing, 72-81, (2014). [bibtex]


  13. Y Zhang, G Zhou, J Jin, Q Zhao, X Wang, A Cichocki Aggregation Of Sparse Linear Discriminant Analyses For Event-Related Potential Classification In Brain-Computer Interface. International Journal of Neural Systems, 24(1), 1450003 (15 pages), (2014).[bibtex]


  14. Y Zhang, G Zhou, J Jin, X Wang, A Cichocki Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. International Journal of Neural Systems, 24(3), 1450013 (14 pages), (2014).[bibtex]


  15. Q Zhao, L Zhang, A Cichocki Multilinear and Nonlinear Generalizations of Partial Least Squares: An Overview of Recent Advances. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2), 104-115, (2014).[bibtex]


  16. G Zhou, A Cichocki, Q Zhao, S Xie Nonnegative matrix and tensor factorizations: An algorithmic perspective. IEEE Signal Processing Magazine, 31(3), 54-65, (2014).[bibtex]


  17. G Zhou, Q Zhao, Y Zhang, A Cichocki Fast Nonnegative Tensor Factorization by Using Accelerated Proximal Gradient. Lecture Notes in Computer Science 8866 459-468, (2014). [bibtex]


2013
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. D-M Alexander, P Jurica, C Trengove, A-R Nikolaev, S Gepshtein, M Zvyagintsev, K Mathiak, A Schulze-Bonhage, J Rueschere, T Ball, C Leeuwen Traveling waves and trial averaging: The nature of single-trial and averaged brain responses in large-scale cortical signals. NeuroImage, 73, 95-112, (2013).[bibtex]


  2. C Caiafa, A Cichocki Computing Sparse Representations of Multidimensional Signals Using Kronecker Bases. Neural Computation, 25(1), 186-220, (2013).[bibtex]


  3. C Caiafa, A Cichocki Multidimensional compressed sensing and their applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(6), 355-380, (2013).[bibtex]


  4. F Cong, Z He, J Hamalainen, P Leppanen, H Lyytinen, A Cichocki, T Ristaniemi Validating Rationale of Group-level Component Analysis based on Estimating Number of Sources in EEG through Model Order Selection. Journal of Neuroscience Methods, 212(1), 165-172, (2013).[bibtex]


  5. F Cong, A-H Phan, P Astikainen, Q Zhao, Q Wu, J Hietanen, T Ristaniemi, A Cichocki Multi-domain Feature Extraction for Small Event-related Potentials through Nonnegative Multi-way Array Decomposition from Low Dense Array EEG. International Journal of Neural Systems, 23(2), 1350006, (2013).[bibtex]


  6. M Elgendi, J Dauwels, B Rebsamen, R Shukla, Y Putra, J Gamez, N ZePing, B Ho, N Prasad, D Aggarwal, A Nair, V Mishuhina, F-B Vialatte, M Constable, A Cichocki, C Latchoumane, J Jeong, D Thalmann, N Magnenat-Thalmann From Auditory and Visual to Immersive Neurofeedback: Application to Diagnosis of Alzheimer's Disease. Neural Computation, Neurodevices, and Neural Prosthesis, in press, (2013). [bibtex]


  7. J Jin, E Sellers, Y Zhang, I Daly, X Wang, A Cichocki Whether generic model works for rapid ERP-based BCI calibration. Journal of Neuroscience Methods, 212(1), 94-99, (2013).[bibtex]


  8. A Jukic, I Kopriva, A Cichocki Noninvasive diagnosis of melanoma with tensor decomposition-based feature extraction from clinical color image. Biomedical Signal Processing and Control, 8(6), 755-763, (2013).[bibtex]


  9. P Jurica, S Gepstein, I Tyukin, C Leeuwen Sensory Optimization by Stochastic Tuning. Psychological Review, 120(4), 798-816, (2013).[bibtex]


  10. Z Koldovsky, P Tichavsky, A-H Phan, A Cichocki A Two-Stage MMSE Beamformer for Underdetermined Signal Separation. IEEE Signal Processing Letters, 20(12), 1227-1230, (2013).[bibtex]


  11. A Mandal, A Cichocki Non-Linear Canonical Correlation Analysis Using Alpha-Beta Divergence. Entropy, 15(7), 2788-2804, (2013).[bibtex]


  12. A-R Nikolaev, P Jurica, C Nakatani, G Plomp, C Leeuwen Visual encoding and fixation target selection in free viewing: presaccadic brain potentials. Frontiers in System Neuroscience, 27 June 2013, online, (2013).[bibtex]


  13. A-H Phan, P Tichavsky, A Cichocki Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC. SIAM Journal on Matrix Analysis and Applications, 34(1), 126-147, (2013).[bibtex]


  14. A-H Phan, P Tichavsky, A Cichocki CANDECOMP/PARAFAC Decomposition of High-Order Tensor Through Tensor Reshaping. IEEE Trans. on Signal Processing, 61(19), 4847-4860, (2013).[bibtex]


  15. A-H Phan, P Tichavsky, A Cichocki Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations. IEEE Trans. on Signal Processing, 61(19), 4834-4846, (2013).[bibtex]


  16. S Sanei, S Ferdowsi, K Nazarpour, A Cichocki Advances in Electroencephalography Signal Processing. IEEE Signal Processing Magazine, 30(1), 170-176, (2013).[bibtex]


  17. Y Zhang, G Zhou, Q Zhao, J Jin, X Wang, A Cichocki Spatial-temporal discriminant analysis for ERP-based brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 233-243, (2013).[bibtex]


  18. Y Zhang, G Zhou, J Jin, M Wang, X Wang, A Cichocki L1-Regularized Multiway Canonical Correlation Analysis for SSVEP-Based BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 887-896, (2013).[bibtex]


  19. Q Zhao, C Caiafa, D Mandic, Z Chao, Y Nagasaka, N Fujii, L Zhang, A Cichocki Higher-Order Partial Least Squares (HOPLS): A Generalized Multilinear Regression Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1660-1673, (2013).[bibtex]


  20. Q Zhao, Y Zhang, A Onishi, A Cichocki An Affective BCI Using Multiple ERP Components Associated to Facial Emotion Processing. SpringerBriefs in Electrical and Computer Engineering Brain-Computer Interface Research, 61-72, (2013). [bibtex]


  21. Q Zhao, G Zhou, T Adali, L Zhang, A Cichocki Kernelization of Tensor-Based Models for Multiway Data Analysis. IEEE Signal Processing Magazine, 30(4), 137-148, (2013).[bibtex]


  22. G Zhou, A Cichocki, S Xie Common and Individual Features Analysis: Beyond Canonical Correlation Analysis. CoRR, arXiv:1212.3913, (2013).[bibtex]


2012
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. F Cong, A-H Phan, P Astikainen, Q Zhao, J Hietanen, T Ristaniemi, A Cichocki Multi-domain Feature of Event-Related Potential Extracted by Nonnegative Tensor Factorization: 5 vs 14 Electrodes EEG Data. Lecture Notes in Computer Science 7191 Latent Variable Analysis and Signal Separation, 502-510, (2012). [bibtex]


  2. F Cong, A-H Phan, Q Zhao, T Huttunen-Scott, J Kaartinen, T Ristaniemi, H Lyytinen, A Cichocki Benefits of Multi-domain Feature of Mismatch Negativity Extracted by Non-negative Tensor Factorization from EEG Collected by Low-Density Array. International Journal of Neural Systems, 22(6), 1-19, (2012).[bibtex]


  3. F Cong, A-H Phan, Q Zhao, A Nandi, V Alluri, P Toiviainen, H Poikonen, M Huotilainen, A Cichocki, T Ristaniemi Analysis of Ongoing EEG Elicited by Natural Music Stimuli Using Nonnegative Tensor Factorization. Proc. The 2012 European Signal Processing Conference (EUSIPCO-2012), 494-498, (2012).[bibtex]


  4. J Dauwels, T Weber, F Vialatte, T Musha, A Cichocki Quantifying Statistical Interdependence, Part III: N > 2 Point Processes. Neural Computation, 24(2), 408-454, (2012).[bibtex]


  5. J Jin, B Allison, T Kaufmann, A Kubler, Y Zhang, X Wang, A Cichocki The Changing Face of P300 BCIs: A Comparison of Stimulus Changes in a P300 BCI Involving Faces, Emotion, and Movement. PLoS One, 7(11), 1-10, (2012).[bibtex]


  6. C Latchoumane, F Vialatte, J Sole-Casals, M Maurice, S Wimalaratna, N Hudson, J Jeong, A Cichocki Multiway array decomposition analysis of EEGs in Alzheimer's disease. Journal of Neuroscience Methods, 207(1), 41-50, (2012).[bibtex]


  7. M Mouri, A Funase, A Cichocki, I Takumi, H Yasukawa Effect of Step-by-step Estimation Technique on Uniqueness of Solution in Nonnegative Matrix Factorization Minimizing Quasi-L1 Norm.. Proceedings of 2012 IEEE International Conference on Signal Processing, 157-161, (2012).[bibtex]


  8. Y Nam, Q Zhao, A Cichocki Tongue-Rudder: A Glossokinetic-Potential-Based tongue-Machine Interface. IEEE Transactions on Biomedical Engineering, 59(1), 290-299, (2012).[bibtex]


  9. A-H Phan, A Cichocki, P Tichavsky, Z Koldovsky On Connection between the Convolutive and Ordinary Nonnegative Matrix Factorizations. Lecture Notes in Computer Science 7191 Latent Variable Analysis and Signal Separation, 188-296, (2012). [bibtex]


  10. A-H Phan, A Cichocki, P Tichavsky, D Mandic, K Matsuoka On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach. Lecture Notes in Computer Science 7191 Latent Variable Analysis and Signal Separation, 207-305, (2012). [bibtex]


  11. A-H Phan, A Cichocki Seeking an Appropriate Alternative Least Squares Algorithm for Nonnegative Tensor Factorizations. Neural Computing and Applications, 21(4), 623-637, (2012).[bibtex]


  12. A-H Phan, P Tichavsky, A Cichocki On Fast Computation of Gradients for CANDECOMP/PARAFAC Algorithms. CoRR, arXiv:1204.1586, (2012).[bibtex]


  13. F Vialatte, J Dauwels, T Musha, A Cichocki Audio representations of multi-channel EEG: a new tool for diagnosis of brain disorders. American Journal of Neurodegenerative Disease, 1(3), 292-304, (2012).[bibtex]


  14. Y Washizawa Subset Kernel Principal Component Analysis. IEEE Transactions on Neural Networks and Learning Systems, 23(12), 1961-1973, (2012).[bibtex]


  15. T Yokota, A Cichocki, Y Yamashita Linked PARAFAC/CP tensor decomposition and its fast implementation for multi-block tensor analysis. Lecture Notes in Computer Science 7665 Neural Information Processing, 84-91, (2012). [bibtex]


  16. Y Zhang, Q Zhao, J Jin, X Wang, A Cichocki A Novel BCI Based on ERP Components Sensitive to Configural Processing of Human Faces. Journal of Neural Engineering, 9(2), online, (2012).[bibtex]


  17. G Zhou, A Cichocki Fast and unique Tucker decompositions via Multiway Blind Source Separation. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(1), 389-407, (2012).[bibtex]


  18. G Zhou, A Cichocki, S Xie Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation. IEEE Transactions on Signal Processing, 60(6), 2928-2940, (2012).[bibtex]


  19. G Zhou, A Cichocki Canonical Polyadic Decomposition Based on a Single Mode Blind Source Separation. IEEE Signal Processing Letters, 19(8), 523-526, (2012).[bibtex]


2011
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. H Bakardjian, T Tanaka, A Cichocki Emotional Faces Boost up Steady-state Visual Responses for Brain-Computer Interface. NeuroReport, 22(3), 121-125, (2011).[bibtex]


  2. A Cichocki, S Cruces, S Amari Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization. Entropy, 13(12), 134-170, (2011).[bibtex]


  3. A Cichocki Tensors Decompositions: New Concepts in Brain Data Analysis?. Journal of Control Measurement, and System Integration, 7, 507-517, (2011).[bibtex]


  4. S Cruces, A Cichocki Comment on Blind Source Separation Based on Endpoint Estimation with Applications to the MLSP Data Competition. Neurocomputing, 74(5), 863-865, (2011).[bibtex]


  5. J Dauwels, K Srinivasan, R Ramasubba, T Musha, F Vialatte, C Latchoumane, J Jeong, A Cichocki Slowing and Loss of Complexity in Alzheimer’s EEG: Two Sides of the Same Coin?. International Journal of Alzheimer's Disease, 2011, 1-10, (2011).[bibtex]


  6. Z He, S Xie, R Zdunek, G Zhou, A Cichocki Symmetric Nonnegative Matrix Factorization: Algorithms and Applications to Probabilistic Clustering. IEEE Transactions on Neural Networks, 22(12), 2117-2131, (2011).[bibtex]


  7. H Higashi, T Rutkowski, Y Washizawa, T Tanaka, A Cichocki Imagery Movement Paradigm User Adaptation Improvement with Quasi-movements Phenomenon. Advances in Cognitive Neurodynamics 2 Proceedings of the 2nd International Conference on Cognitive Neurodynamics, 677-681, (2011). [bibtex]


  8. G Hori, J Cao Selecting EEG Component Using Time Series Analysis in Brain Death Diagnosis. Cognitive Neurodynamics, 5(4), 311-319, (2011).[bibtex]


  9. G Hori, J Cao An Application of Translation Error to Brain Death Diagnosis. Lecture Notes in Computer Science 7062 Neural Information Processing, 314-321, (2011). [bibtex]


  10. S Javide, D Mandic, C Took, A Cichocki Kurtosis-Based Blind Source Extraction of Complex Non-Circular Signals with Application in EEG Artifact Removal in Real-Time. Frontiers in Neuroscience, 5, online, (2011).[bibtex]


  11. I Kopriva, M Hadzija, H Popovic, M Korolija, A Cichocki Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen. The American Journal of Pathology, 179(2), 547-554, (2011).[bibtex]


  12. A-H Phan, A Cichocki Extended HALS Algorithm for Nonnegative Tucker Decomposition and its Applications for Multi-Way Analysis and Classification. Neurocomputing, 74(11), 1956-1969, (2011).[bibtex]


  13. A-H Phan, A Cichocki PARAFAC Algorithms for Large-scale Problems. Neurocomputing, 74(11), 1970-1984, (2011).[bibtex]


  14. T Rutkowski, T Tanaka, A Cichocki, D Erickson, J Cao, D-P Mandic Interactive components extraction from fEEG and fNIRS for affective brain machine interfacing paradigms. Computers in Human Behavior, 27(5), 1512-1518, (2011).[bibtex]


  15. T Rutkowski, A Cichocki, D Mandic, T Nishida Emotional Empathy Transition Patterns from Human Brain Responses in Interactive Communication Situations. AI & SOCIETY, 26(3), 301-315, (2011).[bibtex]


  16. T Rutkowski Auditory Brain-Computer/Machine-Interface Paradigms Design. Lecture Notes in Computer Science 6851 Haptic and Audio Interaction Design, 110-119, (2011). [bibtex]


  17. T Rutkowski, Q Zhao, A Cichocki, T Tanaka, D Mandic Towards Affective BCI/BMI Paradigms - Analysis of fEEG and fNIRS Brain Responses to Emotional Speech and Facial Videos. Advances in Cognitive Neurodynamics 2 Proceedings of the 2nd International Conference on Cognitive Neurodynamics, 671-675, (2011). [bibtex]


  18. Q Shi, J Yan, J Cao, T Tanaka, R Wang, H Zhu EEG Data Analysis Based on EMD for Coma and Quasi-Brain-Death Patients. Journal of Experimental & Theoretical Artificial Intelligence, 23(1), 97-110, (2011).[bibtex]


  19. F Vialatte, J Dauwels, M Maurice, T Musha, A Cichocki Improving the specificity of EEG for diagnosing Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 1-7, (2011).[bibtex]


  20. Y Washizawa, M Tanaka Centered Subset Kernel PCA for Denoising. Lecture Notes in Computer Science 6469 Computer Vision – ACCV 2010 Workshops, 354-363, (2011). [bibtex]


  21. Y Washizawa Trace Norm Regularization and Application to Tensor based Feature Extraction. Lecture Notes in Computer Science 6469 Computer Vision – ACCV 2010 Workshops, 404-413, (2011). [bibtex]


  22. K Yang, Q Shi, J Cao, R Wang, H Zhu, Z He Analyzing EEG of Quasi-brain-death Based on Approximate Entropy Measures. Advances in Cognitive Neurodynamics 2 Proceedings of the 2nd International Conference on Cognitive Neurodynamics, 735-739, (2011). [bibtex]


  23. Y Zhang, G Zhou, Q Zhao, A Onishi, J Jin, X Wang, A Cichocki Multiway Canonical Correlation Analysis for Frequency Components Recognition in SSVEP-Based BCIs. Lecture Notes in Computer Science 7062 Neural Information Processing, 287-295, (2011). [bibtex]


  24. Q Zhao, A Onishi, Y Zhang, J Cao, L Zhang, A Cichocki A Novel Oddball paradigm for Affective BCIs Using Emotional Faces as Stimuli. Lecture Notes in Computer Science 7062 Neural Information Processing, 279-286, (2011). [bibtex]


  25. Q Zhao, T Rutkowski, A Cichocki, L Zhang High Resolution Common Spatial Frequency Filters for Classifying Multi-class EEG. Advances in Cognitive Neurodynamics 2 Proceedings of the 2nd International Conference on Cognitive Neurodynamics, 683-688, (2011). [bibtex]


2010
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. S Amari, A Cichocki Information Geometry of Divergence Functions. Bulletin of the Polish Academy of Sciences: Technical Sciences, 58(1), 183-195, (2010).[bibtex]


  2. H Bakardjian, T Tanaka, A Cichocki Optimization of SSVEP Brain Responses with Application to Eight-command Brain-Computer Interface. Neuroscience Letters, 469(1), 34-38, (2010).[bibtex]


  3. C Caiafa, A Cichocki Generalizing the column-row matrix decomposition to multi-way arrays. Linear Algebra and its Applications, 433(3), 557-573, (2010).[bibtex]


  4. L Caram, C Caiafa, A Proto, M Ausloos Dynamic Peer-to-peer Competition. Physica A: Statistical Mechanics and its Applications, 389(13), 2628-2636, (2010).[bibtex]


  5. A Cichocki, S Amari Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities. Entropy, 12(6), 1532-1568, (2010).[bibtex]


  6. F Cong, I Kalyakin, A-H Phan, A Cichocki, T Huttunen-Scott, H Lyytinen, T Ristaniemi Extract Mismatch Negativity and P3a through Two-Dimensional Nonnegative Decomposition on Time-Frequency Represented Event-Related Potentials. Lecture Notes in Computer Science 6064 Advances in Neural Networks - ISNN 2010, 385-391, (2010). [bibtex]


  7. F Cong, A-H Phan, H Lyytinen, T Ristaniemi, A Cichocki Classifying Healthy Children and Children with Attention Deficit through Features Derived from Sparse and Nonnegative Tensor Factorization Using Event-Related Potential. Lecture Notes in Computer Science 6365 Latent Variable Analysis and Signal Separation, 620-628, (2010). [bibtex]


  8. J Dauwels, F Vialatte, T Musha, A Cichocki A Comparative Study of Synchrony Measures for Early Diagnosis of Alzheimer’s Disease Based on EEG. NeuroImage, 49(1), 668-693, (2010).[bibtex]


  9. A Funase, M Mouri, A Cichocki, I Takumi Research on Relationship between Saccade-Related EEG Signals and Selection of Electrode Position by Independent Component Analysis. Lecture Notes in Computer Science 6444 Neural Information Processing. Models and Applications, 74-81, (2010). [bibtex]


  10. Z He, A Cichocki Robust Channel Identification Using FOCUSS Method. Lecture Notes in Electrical Engineering 67 Advances in Neural Network Research and Applications, 471-477, (2010). [bibtex]


  11. Z He, A Cichocki, S Xie, K Choi Detecting the Number of Clusters in n-way Probabilistic Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11), 2006-2021, (2010).[bibtex]


  12. G Hori Joint SVD and Its Application to Factorization Method. Lecture Notes in Computer Science 6365 Latent Variable Analysis and Signal Separation, 563-570, (2010). [bibtex]


  13. T Hoya, C van Leeuwen A Cascaded Neuro-Computational Model for Spoken Word Recognition. Connection Science, 22(1), 87-101, (2010).[bibtex]


  14. S Javidi, D Mandic, A Cichocki Complex Blind Source Extraction From Noisy Mixtures Using Second-Order Statistics. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(7), 1404-1416, (2010).[bibtex]


  15. Y Nam, Q Zhao, A Cichocki, S Choi A Tongue-Machine Interface: Detection of Tongue Positions by Glossokinetic Potentials. Lecture Notes in Computer Science 6444 Neural Information Processing. Models and Applications, 34-41, (2010). [bibtex]


  16. Y Nam, H Kang, Q Zhao, A Cichocki, S Choi Mind Flipper: An EEG-based Brain Computer Interface for Page-turning during Presentation. Australian Journal of Intelligent Information Processing Systems, 11(3), online, (2010).[bibtex]


  17. A-H Phan, A Cichocki Tensor Decompositions for Feature Extraction and Classification of High Dimensional Datasets. Nonlinear Theory and Its Applications, IEICE, 1(1), 37-68, (2010).[bibtex]


  18. A-H Phan, A Cichocki, T Vu-Dinh Nonnegative DEDICOM Based on Tensor Decompositions for Social Networks Exploration. Australian Journal of Intelligent Information Processing Systems, 12(1), 10-15, (2010).[bibtex]


  19. A-H Phan, A Cichocki, R Zdunek, T Vu-Dinh Novel Alternating Least Squares Algorithms for Nonnegative Matrix and Tensor Factorizations. Lecture Notes in Computer Science 6443 Neural Information Processing. Theory and Algorithms, 262-269, (2010). [bibtex]


  20. T Rutkowski, D Mandic, A Cichocki, A Przybyszewski EMD Approach to Multichannel EEG Data - The Amplitude and Phase Components Clustering Analysis. Journal of Circuits, Systems and Computers, 19(1), 215-229, (2010).[bibtex]


  21. T Rutkowski, A Cichocki, D Mandic EMD Analysis of Multichannel EEG Data. Journal of Circuits, Systems and Computers, 19(1), 215-229, (2010).[bibtex]


  22. Q Shi, W Zhou, J Cao, D Mandic, T Tanaka, T Rutkowski, R Wan An Auditory Oddball Based Brain-computer Interface System using Multivariate EMD. Lecture Notes in Computer Science 6216 Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 140-148, (2010). [bibtex]


  23. T Shinozaki, M Okada, A Reyes, H Cateau Flexible Traffic Control of the Synfire-mode Transmission by Inhibitory Modulation: Nonlinear Noise Reduction. Physical Review E, 81(1), 1-7, (2010).[bibtex]


  24. F Vialatte, M Maurice-Vialatte, J Dauwels, A Cichocki Steady-State Visually Evoked Potentials: Focus on Essential Paradigms and Future Perspectives. Progress in Neurobiology, 90(4), 418-438, (2010).[bibtex]


  25. Y Washizawa Feature Extraction Using Constrained Approximation and Suppression. IEEE Transactions on Neural Networks, 21(2), 201-210, (2010).[bibtex]


  26. Y Washizawa, Y Yamashita, T Tanaka, A Cichocki Blind Extraction of Global Signals from Multi-Chaneel Noisy Observations. IEEE Transactions on Neural Networks, 21(9), 1472-1481, (2010).[bibtex]


  27. Y Washizawa, H Higashi, T Rutkowski, T Tanaka, A Cichocki Tensor Based Simultaneous Feature Extraction and Sample Weighting for EEG Classification. Lecture Notes in Computer Science 6444 Neural Information Processing. Models and Applications, 26-33, (2010). [bibtex]


  28. H Yoshino, D Chen, Y Washizawa, Y Yamashita Kernel Wiener Filter and its Application to pattern Recognition. IEEE Transactions on Neural Networks, 21(11), 1719-1730, (2010).[bibtex]


  29. R Zdunek, A-H Phan, A Cichocki Damped Newton Iterations for Nonnegative Matrix Factorization. Australian Journal of Intelligent Information Processing Systems, 12(1), 16-22, (2010).[bibtex]


  30. Q Zhao, T Rutkowski, L Zhang, A Cichocki Generalized Optimal Spatial Filtering Using a Kernel Approach with Application to EEG Classification. Cognitive Neurodynamics, 4(4), 355-358, (2010).[bibtex]


2009
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. C Caiafa, A Cichocki Estimation of Sparse Non-negative Sources from Noisy Overcomplete Mixtures using MAP. Neural Computation, 21(12), 3487-3518, (2009).[bibtex]


  2. A Cichocki, A-H Phan Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E92-A(3), 708-721, (2009).[bibtex]


  3. A Cichocki, R Zdunek, S Amari Nonnegative Matrix and Tensor Factorization. IEEE Signal Processing Magazine, 25(1), 142-145, (2009).[bibtex]


  4. J Dauwels, F Vialatte, T Weber, A Cichocki Quantifying Statistical Interdependence by Message Passing on Graphs, PART I: One-Dimensional Point Processes. Neural Computation, 21(8), 2152-2202, (2009).[bibtex]


  5. J Dauwels, F Vialatte, T Weber, A Cichocki Quantifying Statistical Interdependence by Message Passing on Graphs, PART II: Multi-Dimensional Point Processes. Neural Computation, 21(8), 2203-2268, (2009).[bibtex]


  6. J Dauwels, F Vialatte, T Weber, A Cichocki On Similarity Measures for Spike Trains. Lecture Notes in Computer Science 5506 Advances in Neuro-Information Processing, 177-185, (2009). [bibtex]


  7. J Dauwels, F Vialatte, T Weber, A Cichocki An Exemplar-Based Statistical Model for the Dynamics of Neural Synchrony. Lecture Notes in Computer Science 5506 Advances in Neuro-Information Processing, 318-326, (2009). [bibtex]


  8. J Dauwels, Y Tsukada, Y Sakumura, S Ishii, K Aoki, T Nakamura, M Matsuda, F Vialatte, A Cichocki On the Synchrony of Morphological and Molecular Signaling Events in Cell Migration. Lecture Notes in Computer Science 5506 Advances in Neuro-Information Processing, 469-477, (2009). [bibtex]


  9. J Dauwels, F Vialatte, T Rutkowski, A Cichocki Measuring Neural Synchrony by Message Passing. Advances in Neural Information Processing Systems 20 Proceedings of the 21st Annual Conference on Neural Information Processing Systems, 689-696, (2009). [bibtex]


  10. Z He, A Cichocki, R Zdunek, SL Xie Improved FOCUSS Methods with Conjugate Gradient Iterations. IEEE Trans. Signal Processing, 57(1), 399-404, (2009).[bibtex]


  11. Z He, A Cichocki, YQ Li, SL Xie, S Sanei K-hyperline Clustering Learning for Sparse Component Analysis. Signal Processing, 89(6), 1011-1022, (2009).[bibtex]


  12. Z He, A Cichocki, S Xie Efficient Method for Tucker3 Model Selection. Electronics Letters, 45(15), 805, (2009).[bibtex]


  13. Z He, A Cichocki An Efficient PCA based Method for Tucker 3 Model Selection. Electronics Letters, 45(15), 805, (2009).[bibtex]


  14. G Hori Comparison of Two Main Approaches to Joint SVD. Lecture Notes in Computer Science 5441 Independent Component Analysis and Signal Separation, 42-49, (2009). [bibtex]


  15. I Kopriva, A Cichocki Blind Multispectral Image Decomposition by 3D Nonnegative Tensor Factorization. Optics Letters, 34(14), 2210, (2009).[bibtex]


  16. I Kopriva, I Jeric, A Cichocki Blind Decomposition of Infrared Spectra Using Flexible Component Analysis. Chemometrics and Intelligent Laboratory Systems, 97(2), 170-178, (2009).[bibtex]


  17. I Kopriva, A Cichocki Blind Decomposition of Low-dimensional Multi-spectral Image by Sparse Component Analysis. Journal of Chemometrics, 23(11), 590-597, (2009).[bibtex]


  18. C Latchoumane, F Vialatte, J Jeong, A Cichocki EEG Classification of Mild and Severe Alzheimer’s Disease using Parallel Factor Analysis Method. Lecture Notes in Electrical Engineering 39 Advances in Electrical Engineering and Computational Science, 705-715, (2009). [bibtex]


  19. H Lee, A Cichocki, S Choi Kernel Nonnegative Matrix Factorization for Spectral EEG Features Extraction. Neurocomputing, 72(13-15), 3182-3190, (2009).[bibtex]


  20. A-H Phan, A Cichocki Advances in PARAFAC Using Parallel Block Decomposition. Lecture Notes in Computer Science 5863 Neural Information Processing, 323-330, (2009). [bibtex]


  21. A-H Phan, A Cichocki Local Learning Rules for Nonnegative Tucker Decomposition. Lecture Notes in Computer Science 5863 Neural Information Processing, 538-545, (2009). [bibtex]


  22. A-H Phan, A Cichocki Tensor Decompositions for Very Large Scale Problems. Internal Report LABSP 2009 , (2009).[bibtex]


  23. T Rutkowski, A Cichocki, T Tanaka, A Ralescu, D Mandic Clustering of Spectral Patterns Based on EMD Components of EEG Channels with Applications to Neurophysiological Signals Separation. Lecture Notes in Computer Science 5506 Advances in Neuro-Information Processing, 452-459, (2009). [bibtex]


  24. A Sano, H Bakardjian Movement-Related Cortical Evoked Potentials Using Four-Limb Imagery. International Journal of Neuroscience, 119(5), 639-663, (2009).[bibtex]


  25. B Swiderski, S Osowski, A Cichocki, A Rysz Single-class SVM and Directed Transfer Function Approach to the Localization of the Region Containing Epileptic Focus. Neurocomputing, 72(7-9), 1575-1583, (2009).[bibtex]


  26. F Vialatte, H Bakardjian, R Prasad, A Cichocki EEG Paroxysmal Gamma Waves during Bhramari Pranayama: a Yoga Breathing Technique. Consciousness and Cognition, 18(4), 977-988, (2009).[bibtex]


  27. F Vialatte, J Dauwels, M Maurice, Y Yamaguchi, A Cichocki On the Synchrony of Steady State Visual Evoked Potentials and Oscillatory Burst Events. Cognitive Neurodynamics, 3(3), 251-261, (2009).[bibtex]


  28. F Vialatte, M Maurice, J Dauwels, A Cichocki Steady State Visual Evoked Potentials in the Delta Range (0.5-5Hz). Lecture Notes in Computer Science 5506 Advances in Neuro-Information Processing, 400-407, (2009). [bibtex]


  29. F Vialatte, J Dauwels, J Sole-Casals, M Maurice, A Cichocki Improved Sparse Bump Modeling for Electrophysiological Data. Lecture Notes in Computer Science 5506 Advances in Neuro-Information Processing, 224-231, (2009). [bibtex]


  30. F Vialatte, J Sole-Casals, M Maurice, C Latchoumane, N Hudson, S Wimalaratna, J Jeong, A Cichocki Improving the Quality of EEG Data in Patients with Alzheimers Disease Using ICA. Lecture Notes in Computer Science 5507 Advances in Neuro-Information Processing, 979-986, (2009). [bibtex]


  31. F Vialatte, J Sole-Casals, J Dauwels, M Maurice, A Cichocki Bump Time-Frequency Toolbox: a Toolbox for Time-Frequency Oscillatory Bursts Extraction in Electrophysiological Signals. BMC Neuroscience, 10(1), 46, (2009).[bibtex]


  32. F-B Vialatte, T Musha, A Cichocki Sparse Bump Sonification: a New Tool for Multichannel EEG Diagnosis of Brain Disorders. Artificial Intelligence in Medicine, (2009).[bibtex]


  33. W Wang, A Cichocki, J Chambers A Multiplicative Algorithm for Convolutive Non-Negative Matrix Factorization Based on Squared Euclidean Distance. IEEE Transactions on Signal Processing, 57(7), 2858-2864, (2009).[bibtex]


  34. J Yang, Y Saito, Q Shi, J Cao, T Tanaka, T Takeda Empirical Mode Decomposition Method for MEG Phantom Data Analysis. Journal of Circuits, Systems and Computers, 18(8), 1467-1480, (2009).[bibtex]


  35. Q Zhao, L Zhang, A Cichocki EEG-based Asynchronous BCI Control of a Car in 3D Virtual Reality Environments. Chinese Science Bulletin, 54(1), 78-87, (2009).[bibtex]


  36. Q Zhao, C Caiafa, A Cichocki, L Zhang, A-H Phan Slice Oriented Tensor Decomposition of EEG Data for Feature Extraction in Space, Frequency and Time Domains. Lecture Notes in Computer Science 5863 Neural Information Processing, 221-228, (2009). [bibtex]


2008
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. Z Chen, J Cao, Y Cao, Y Zhang, F Gu, G Zhu, Z Hong, B Wang, A Cichocki An Empirical EEG Analysis in Brain Death Diagnosis for Adults. Cognitive Neurodynamics, 2(3), 257-271, (2008).[bibtex]


  2. A Cichocki, M Jankovic, R Zdunek, S Amari Sparse Super Symmetric Tensor Factorization. Lecture Notes in Computer Science 4984 Neural Information Processing, 781-790, (2008). [bibtex]


  3. A Cichocki, A-H Phan, R Zdunek, L-Q Zhang Flexible Component Analysis for Sparse, Smooth, Nonnegative Coding or Representation. Lecture Notes in Computer Science 4984 Neural Information Processing, 811-820, (2008). [bibtex]


  4. A Cichocki, H-K Lee, Y-D Kim, S Choi Nonnegative Matrix Factorization with Alpha-divergence. Pattern Recognition Letters, 29(9), 1433-1440, (2008).[bibtex]


  5. A Cichocki, Y Washizawa, T Rutkowski, H Bakardjian, A-H Phan, S Choi, H Lee, Q Zhao, Z Liqing, Y Li Noninvasive BCIs: Multi-way Signal Processing Array Decompositions. Computer, 41(10), 34-42, (2008).[bibtex]


  6. J Dauwels, F Vialatte, A Cichocki A Comparative Study of Synchrony Measures for the Early Detection of Alzheimer’s Disease Based on EEG. Lecture Notes in Computer Science 4984 Neural Information Processing, 112-125, (2008). [bibtex]


  7. A Funase, M Mouri, T Yagi, A Cichocki, I Takumi Analysis on Saccade-related Independent Components by various ICA algorithms. Lecture Notes in Computer Science 5507 Advances in Neuro-Information Processing, 456-459, (2008). [bibtex]


  8. Z He, S Xie, L Zhang, A Cichocki A note on Lewicki-Sejnowski Gradient for Learning Overcomplete Representations. Neural Computation, 20(3), 636-643, (2008).[bibtex]


  9. Z He, A Cichocki, R Zdunek, J Cao CG-M-FOCUSS and Its Application to Distributed Compressed Sensing. Lecture Notes in Computer Science 5263 Advances in Neural Networks, 237-245, (2008). [bibtex]


  10. YQ Li, A Cichocki, S Amari, SL Xie, SL Guan Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation. IEEE Transactions on Neural Networks, 19(12), 2009-2021, (2008).[bibtex]


  11. D Looney, L Li, T Rutkowski, D Mandic, A Cichocki Ocular Artifacts Removal from EEG using EMD. Advances in Cognitive Neurodynamics Proceedings of the International Conference on Cognitive Neurodynamics, 831-835, (2008). [bibtex]


  12. P Martinez, H Bakardjian, M Vallverdu, A Cichocki Fast Multi-command SSVEP Brain Machine Interface without Training. Lecture Notes in Computer Science 5164 Artificial Neural Networks - ICANN 2008, 300-307, (2008). [bibtex]


  13. P Martinez, H Bakardjian, A Cichocki Multi-command Real-time Brain Machine Interface Using SSVEP: Feasible Study for Occipital and Forehead Sensor Location. Advances in Cognitive Neurodynamics Proceedings of the International Conference on Cognitive Neurodynamics, 783-786, (2008). [bibtex]


  14. M Mouri, A Funase, A Cichocki, I Takumi, H Yasukawa, M Hata Global Signal Elimination and Local Signals Enhancement from EM Radiation Waves Using Independent Component Analysis. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E91-A(8), 1875-1882, (2008).[bibtex]


  15. A-H Phan, A Cichocki Fast and Efficient Algorithms for Nonnegative Tucker Decomposition. Lecture Notes in Computer Science 5264 Advances in Neural Networks - ISNN 2008, 772-782, (2008). [bibtex]


  16. T Rutkowski, D Mandic, A Cichocki, A Przybyszewski EMD Approach to Multichannel EEG Data - The Amplitude and Phase Synchrony Analysis Technique. Lecture Notes in Computer Science 5226 Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues, 122-129, (2008). [bibtex]


  17. T Rutkowski, A Cichocki, D Mandic Information Fusion for Perceptual Feedback: A Brain Activity Sonification Approach. Signal Processing Techniques for Knowledge Extraction and Information Fusion, 261-273, (2008). [bibtex]


  18. T Rutkowski, A Cichocki, A Ralescu, D Mandic Emotional States Estimation from Multichannel EEG Maps. Advances in Cognitive Neurodynamics Proceedings of the International Conference on Cognitive Neurodynamics, 695-698, (2008). [bibtex]


  19. T Shinozaki, T Takeda Increase of Late MEG Component by Perceptual Transition in Binocular Rivalry. Electronics and Communications in Japan, 91(4), 12-19, (2008).[bibtex]


  20. F Vialatte, A Cichocki Split-Test Bonferroni Correction for QEEG Statistical Maps. Biological Cybernetics, 98(4), 295-303, (2008).[bibtex]


  21. F Vialatte, J Sole-Casals, A Cichocki EEG Windowed Statistical Wavelet Scoring for Evaluation and Discrimination of Muscular Artifacts. Physiological Measurement, 29(12), 1435-1452, (2008).[bibtex]


  22. F Vialatte, J Dauwels, T Rutkowski, A Cichocki Oscillatory Event Synchrony During Steady State Visual Evoked Potentials. Advances in Cognitive Neurodynamics Proceedings of the International Conference on Cognitive Neurodynamics, 439-442, (2008). [bibtex]


  23. Y Washizawa, A Cichocki Sparse Blind Identification and Separation by Using Adaptive K-orthodrome Clustering. Neurocomputing, 71(10-12), 2321-2329, (2008).[bibtex]


  24. J Xu, H Bakardjian, A Cichocki, J Principe A New Nonlinear Similarity Measure for Multichannel Signals. Neural Networks, 21(2-3), 222-231, (2008).[bibtex]


  25. R Zdunek, A Cichocki Nonnegative Matrix Factorization with Quadratic Programming. Neurocomputing, 71(10-12), 2309-2320, (2008).[bibtex]


  26. R Zdunek, A Cichocki Blind Image Separation Using Nonnegative Matrix Factorization with Gibbs Smoothing. Lecture Notes in Computer Science 4985 Neural Information Processing, 519-528, (2008). [bibtex]


  27. R Zdunek, T Rutkowski Nonnegative Tensor Factorization with Smoothness Constraints. Lecture Notes in Computer Science 5226 Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues, 326-333, (2008). [bibtex]


  28. R Zdunek, A Cichocki Improved M-FOCUSS Algorithm with Overlapping Blocks for Locally Smooth Sparse Signals. IEEE Transactions on Signal Processing, 56(10), 4752-4761, (2008).[bibtex]


  29. R Zdunek, A Cichocki Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems. Computational Intelligence and Neuroscience, 2008, ID 939567, (2008).[bibtex]


2007
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. L Astofi, F Cincotti, D Mattia, M Marciani, F Fallani, F Miwakeichi, Y Yamaguchi, P Martinez, S Salinari, A Tocci, H Bakardjian, A Cichocki, F Babiloni Removal of Ocular Artifacts for High-resolution EEG Studies: A Simulation Study. International Journal of Bioelectromagnetism, 9(4), 253-259, (2007).[bibtex]


  2. L Astolfi, H Bakardjian, F Cincotti, D Mattia, M Marciani, F Fallani, A Colosimo, S Salinari, F Miwakeichi, Y Yamaguchi, P Martinez, A Cichocki, A Tocci, F Babiloni Estimate of Causality between Independent Cortical Spatial Patterns during Movement Volition in Spinal Cord Injured Patients. Brain Topography, 19(3), 107-123, (2007).[bibtex]


  3. Z Chen, S Ohara, J Cao, F Vialatte, F Lenz, A Cichocki Statistical Modeling and Analysis of Laser-Evoked Potentials of Electrocorticogram Recordings from Awake Humans. Computational Intelligence and Neuroscience, 2007, 1-24, (2007).[bibtex]


  4. A Cichocki, R Zdunek, S Choi, R Plemmons, S Amari Novel Multi-layer Non-negative Tensor Factorization with Sparsity Constraints. Lecture Notes in Computer Science 4432 Adaptive and Natural Computing Algorithms, 271-280, (2007). [bibtex]


  5. A Cichocki, R Zdunek Regularized Alternating Least Squares Algorithms for Non-negative Matrix/Tensor Factorizations. Lecture Notes in Computer Science 4493 Advances in Neural Networks – ISNN 2007, 793-802, (2007). [bibtex]


  6. A Cichocki, R Zdunek, S Amari Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization. Lecture Notes in Computer Science 4666 Independent Component Analysis and Signal Separation, 169-176, (2007). [bibtex]


  7. A Cichocki, R Zdunek Multi-layer Nonnegative Matrix Factorization using Projected Gradient Approaches. International Journal of Neural Systems, 17(6), 431-446, (2007).[bibtex]


  8. J Dauwels, F Vialatte, A Cichocki On Synchrony Measures for the Detection of Alzheimer's Disease based on EEG. Lecture Notes on Computer Science (2007). [bibtex]


  9. F Fallani, L Astolfi, F Cincotti, D Mattia, M Marciani, S Salinari, J Kurths, S Gao, A Cichocki, A Colosimo, F Babioni Cortical Functional Connectivity Networks in Normal and Spinal Cord Injured Patients: Evaluation by Graph Analysis. Human Brain Mapping, 28(12), 1334-1346, (2007).[bibtex]


  10. D Feng, W Zheng, A Cichocki Matrix-Group Algorithm via Improved Whitening Process for Extracting Statistically Independent Sources from Array Signals. IEEE Transactions on Signal Processing, 55(3), 962-977, (2007).[bibtex]


  11. A Funase, H Nakatani, M Mouri, T Yagi, A Cichocki, I Takumi Single-Trail EEG Processing for Brain Computer Interface. IFMBE Proceedings 14 World Congress on Medical Physics and Biomedical Engineering 2006, 1059-1062, (2007). [bibtex]


  12. P Georgiev, P Pardalos, A Cichocki Algorithms with High Order Convergence Speed for Blind Source Extraction. Computational Optimization and Applications, 38(1), 123-131, (2007).[bibtex]


  13. P Georgiev, F Theis, A Cichocki, H Bakardjian Sparse Component Analysis: a New Tool for Data Mining. Springer Optimization and Its Applications 7 Data Mining in Biomedicine, 91-116, (2007). [bibtex]


  14. Z He, S Xie, S Ding, A Cichocki Convolutive Blind Source Separation in the Frequency Domain Based on Sparse Representation. IEEE Transactions on Audio, Speech and Language Processing, 15(5), 1551-1563, (2007).[bibtex]


  15. Z He, A Cichocki An Efficient K-Hyperplane Clustering Algorithm and Its Application to Sparse Component Analysis. Lecture Notes in Computer Science 4492 Advances in Neural Networks – ISNN 2007, 1032-1041, (2007). [bibtex]


  16. T Hoya, Y Washizawa Simultaneous Pattern Classification and Multi-Domain Association Using Self-Structuring Kernel Memory Networks. IEEE Transactions on Neural Networks, 18(3), 732-744, (2007).[bibtex]


  17. M Kawamoto, K Kohno, Y Inouye Robust Eigenvector Algorithms for Blind Deconvolution of Mimo Linear Systems. Circuits, Systems & Signal Processing, 26(4), 473-494, (2007).[bibtex]


  18. H Lee, Y Kim, A Cichocki, S Choi Nonnegative Tensor Factorization for Continuous EEG Classification. International Journal of Neural Systems, 17(4), 305-317, (2007).[bibtex]


  19. W Liu, D Mandic, A Cichocki Blind Source Extraction Based on a Linear Predictor. IET Signal Processing, 1(1), 29-34, (2007).[bibtex]


  20. W Liu, D Mandic, A Cichocki Analysis and Online Realization of the CCA Approach for Blind Source Separation. IEEE Transactions on Neural Networks, 18(5), 1505-1510, (2007).[bibtex]


  21. P Martinez, H Bakardjian, A Cichocki Fully Online Multi-command Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm. Computational Intelligence and Neuroscience, 2007, 1-9, (2007).[bibtex]


  22. S Osowski, B Swiderski, A Cichocki, A Rysz Epileptic Seizure Characterization by Lyapunov Exponent of EEG Signal. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 26(5), 1276-1287, (2007).[bibtex]


  23. C Papadelis, Z Chen, C Kourtidou-Papadeli, P-D Bamidis, I Chouvarda, E Bekiaris, N Maglaveras Monitoring Sleepiness with On-board Electrophysiological Recordings for Preventing Sleep-deprived Traffic Accidents. Clinical Neurophysiology, 118(9), 1906-1922, (2007).[bibtex]


  24. J-H Park, S-Y Kim, C-H Kim, A Cichocki, K Kim Multiscale Entropy Analysis of EEG from Patients under Different Pathological Conditions. Fractals, 15(4), 399-404, (2007).[bibtex]


  25. T Rutkowski, D Mandic Modeling the Communication Atmosphere: A Human Centered Multimedia Approach to Evaluate Communicative Situations. Lecture Notes in Computer Science 4451 Artifical Intelligence for Human Computing, 155-169, (2007). [bibtex]


  26. T Rutkowski, R Zdunek, A Cichocki Multichannel EEG Brain Activity Pattern Analysis in Time-frequency Domain with Nonnegative Matrix Factorization Support. International Congress Series, 1301, 266-269, (2007).[bibtex]


  27. T Rutkowski, D Mandic, A Barros A Multi-modal Approach to Communicative Interactivity Classification. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 49(2), 317-328, (2007).[bibtex]


  28. T Rutkowski, D Mandic Modeling Communication Atmosphere. Lecture Notes in Computer Science 4451 Artifical Intelligence for Human Computing, 353-369, (2007). [bibtex]


  29. A Seghouane, A Cichocki Bayesian Estimation of the Number of Principal Components. Signal Processing, 87(3), 562-568, (2007).[bibtex]


  30. T Shinozaki, H Cateau, T Urakubo, M Okada Controlling Synfire Chain by Inhibitory Synaptic Input. Journal of the Physical Society of Japan, 76(4), 044806, (2007).[bibtex]


  31. B Swiderski, S Osowski, A Cichocki, A Rysz Epileptic Seizure Prediction Using Lyapunov Exponents and Support Vector Machine. Lecture Notes in Computer Science 4432 Adaptive and Natural Computing Algorithms, 373-381, (2007). [bibtex]


  32. T Tanaka, D-P Mandic Complex Empirical Mode Decomposition. IEEE Signal Processing Letters, 14(2), 101-104, (2007).[bibtex]


  33. F Theis, P Georgiev, A Cichocki Robust Sparse Component Analysis Based on a Generalized Hough Transform. EURASIP Journal on Advances in Signal Processing, 2007(1), 052105, (2007).[bibtex]


  34. WL Woon, A Cichocki, F Vialatte, T Musha Techniques for Early Detection of Alzheimer’s Disease Using Spontaneous EEG Recordings. Physiological Measurement, 28(4), 335-347, (2007).[bibtex]


  35. WL Woon, A Cichocki Novel Features for Brain Computer Interfaces. Computational Intelligence and Neuroscience, 2007, 1-7, (2007).[bibtex]


  36. J Yang, J Cao, Y Mitsukura EEG Data Analysis for Coma and Quasi-brain-death Patients. Journal of Signal Processing, 11(6), 481-487, (2007).[bibtex]


  37. R Zdunek, A Cichocki Nonnegative Matrix Factorization with Constrained Second-order Optimization. Signal Processing, 87(8), 1904-1916, (2007).[bibtex]


2006
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. H Bakardjian, A Cichocki, F Cincotti, D Mattia, F Babiloni, MG Marciani, FDV Fallani, F Miwakeichi, Y Yamaguchi, P Martinez, S Salinari, A Tocci, L Astolfi Estimate of Causality Between Cortical Spatial Patterns During Voluntary Movements in Normal Subjects. Clinical Neurophysiology, 117, 149-149, (2006).[bibtex]


  2. J Cao, J Zhao, A Cichocki Visualization of Dynamic Brain Activities Based on the Single-Trial MEG and EEG Data Analysis. Lecture Notes in Computer Science 3973 Advances in Neural Networks - ISNN 2006, 531-540, (2006). [bibtex]


  3. J Cao, L Zhao, A Cichocki Visualization of dynamic brain activities based on single-trial MEG and EEG data analysis. Lecture Notes in Computer Science 3973 Advances in Neural Networks - ISNN 2006, 531-540, (2006). [bibtex]


  4. A Cavalcante, D Mandic, T Rutkowski, A Barros Speech Enhancement Based on the Response Features of Facilitated EI Neurons. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 585-592, (2006). [bibtex]


  5. S Choi, JH Ahn, A Cichocki Constrained Projection Approximation Algorithms for Principal Component Analysis. Neural Processing Letters, 24(1), 53-65, (2006).[bibtex]


  6. A Cichocki, R Zdunek, S Amari Csiszar’s Divergences for Non-negative Matrix Factorization: Family of New Algorithms. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 32-39, (2006). [bibtex]


  7. A Cichocki, S Amari, R Zdunek, R Kompass, G Hori, Z He Extended SMART Algorithms for Non-negative Matrix Factorization. Lecture Notes in Computer Science 4029 Artificial Intelligence and Soft Computing – ICAISC 2006, 548-562, (2006). [bibtex]


  8. A Cichocki, R Zdunek Multi-layer Nonnegative Matrix Factorization. Electronics Letters, 42(16), 947, (2006).[bibtex]


  9. S Ding, J Huang, D Wei, A Cichocki A Near Real-Time Approach for Convolutive Blind Source Separation. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(1), 114-128, (2006).[bibtex]


  10. A Funase, T Yagi, M Mouri, A Barros, A Cichocki, I Takumi Analysis on EEG Signals in Visually and Auditory Guided Saccade Task by FICAR. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 438-445, (2006). [bibtex]


  11. Z He, A Cichocki K-EVD Clustering and Its Applications to Sparse Component Analysis. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 90-97, (2006). [bibtex]


  12. Z He, A Cichocki, S Xie K-Hyperplanes Clustering and Its Application to Sparse Component Analysis. Lecture Notes in Computer Science 4492 Advances in Neural Networks – ISNN 2007, 1038-1047, (2006). [bibtex]


  13. G Hori Global Analysis of Log Likelihood Criterion. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 815-822, (2006). [bibtex]


  14. M Jafari, W Wang, J Chambers, T Hoya, A Cichocki Sequential Blind Source Separation Based Exclusively on Second-Order Statistics Developed for a Class of Periodic Signals. IEEE Transactions on Signal Processing, 54(3), 1028-1040, (2006).[bibtex]


  15. B Jelfs, P Vayanos, M Chen, SL Goh, C Boukis, T Gautama, T Rutkowski, T Kuh, D Mandic An Online Method for Detecting Nonlinearity Within a Signal. Lecture Notes in Computer Science 4253 Knowledge-Based Intelligent Information and Engineering Systems, 1216-1223, (2006). [bibtex]


  16. K Kohno, M Kawamoto, N Asoke, Y Inoue Robust Blind Equalization Algorithms Based on the Constrained Maximization of a Fourth-Order Cumulant Function. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E89-A(5), 1495-1499, (2006).[bibtex]


  17. K Kohno, Y Inouye, M Kawamoto A Super-exponential Deflation Method Incorporated with Higher-order Correlations for Blind Deconvolutin of MIMO Linear Systems. Signal Processing, 86(11), 3505-3512, (2006).[bibtex]


  18. H Lee, A Cichocki, S Choi Nonnegative Matrix Factorization for Motor Imagery EEG Classification. Lecture Notes in Computer Science 4132 Artificial Neural Networks – ICANN 2006, 250-259, (2006). [bibtex]


  19. Y Li, A Cichocki, S Amari, C Guan Analysis of Source Sparsity and Recoverability for SCA Based Blind Source Separation. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 831-837, (2006). [bibtex]


  20. Y Li, S Amari, A Cichocki, D Ho, S Xie Underdetermined Blind Source Separation Based on Sparse Representation. Lecture Notes in Computer Science 4456 Computational Intelligence and Security, 423-437, (2006). [bibtex]


  21. Y Li, A Cichocki, S Amari Blind Estimation of Channel Parameters and Source Components for EEG Signals: A Sparse Factorization Approach. IEEE Transactions on Neural Networks, 17(2), 419-431, (2006).[bibtex]


  22. Y Li, S Amari, A Cichocki, C Guan Probability Estimation for Recoverability Analysis of Blind Source Separation Based on Sparse Representation. IEEE Transactions on Information Theory, 52(7), 3139-3152, (2006).[bibtex]


  23. W Liu, D Mandic, A Cichocki Blind Second-Order Source Extraction of Instantaneous Noisy Mixtures. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9), 931-935, (2006).[bibtex]


  24. J Ma, Z Chen, S Amari Analysis of Feasible Solutions of the ICA Problem Under the One-Bit-Matching Condition. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 838-845, (2006). [bibtex]


  25. M Mouri, A Funase, A Cichocki, I Takumi, H Yasukawa, M Hata Global Noise Elimination from ELF Band Electromagnetic Signals by Independent Component Analysis. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 384-391, (2006). [bibtex]


  26. M Mouri, A Funase, A Cichocki, I Takumi, H Yasukawa, M Hata Global Signal Elimination from ELF Band Electromagnetic Signals by Independent Component Analysis. Lecture Notes in Computer Science 3889 Independent Component Analysis and Blind Signal Separation, 384-391, (2006). [bibtex]


  27. W Nakamura, K Anami, T Mori, O Saitoh, A Cichocki, S Amari Removal of Ballistocardiogram Artifacts from Simultaneously Recorded EEG and fMRI Data Using Independent Component Analysis. IEEE Transactions on Biomedical Engineering, 53(7), 1294-1308, (2006).[bibtex]


  28. T Rutkowski, F Vialatte, A Cichocki, D Mandic, A Barros Auditory Feedback for Brain Computer Interface Management - An EEG Data Sonification Approach. Lecture Notes in Computer Science 4253 Knowledge-Based Intelligent Information and Engineering Systems, 1232-1239, (2006). [bibtex]


  29. T Tanaka, Y Hirasawa, Y Yamashita Variable-Length Lapped Transforms With a Combination of Multiple Synthesis Filter Banks for Image Coding. IEEE Transactions on Image Processing, 15(1), 81-88, (2006).[bibtex]


  30. T Tanaka A Direct Design of Oversampled Perfect Reconstruction FIR Filter Banks of 50%-Overlapping Filters. IEEE Transactions on Signal Processing, 54(8), 3011-3022, (2006).[bibtex]


  31. F Vialatte, A Cichocki Sparse Bump Sonification: A New Tool for Multichannel EEG Diagnosis of Mental Disorders; Application to the Detection of the Early Stage of Alzheimer’s Disease. Lecture Notes in Computer Science 4234 Neural Information Processing, 92-101, (2006). [bibtex]


  32. Y Washizawa, Y Yamashita Kernel Projection Classifiers with Suppressing Features of Other Classes. Neural Computation, 18(8), 1932-1950, (2006).[bibtex]


  33. Y Washizawa, T Tanaka, D Mandic, A Cichocki A Flexible Method for Envelope Estimation in Empirical Mode Decomposition. Lecture Notes in Computer Science 4253 Knowledge-Based Intelligent Information and Engineering Systems, 1248-1255, (2006). [bibtex]


  34. W-L Woon, A Cichocki Temporal complexity features for Brain Computer Interfaces. submitted, (2006).[bibtex]


  35. R Zdunek, A Cichocki Non-negative Matrix Factorization with Quasi-Newton Optimization. Lecture Notes in Computer Science 4029 Artificial Intelligence and Soft Computing – ICAISC 2006, 870-879, (2006). [bibtex]


2005
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. Z Chen, A Cichocki Nonnegative matrix factorization with temporal smoothness and/or spatial decorrelation constraints. Technical Report, RIKEN Brain Science Institute, (2005).[bibtex]


  2. S Choi, A Cichocki, HM Park, SY Lee Blind Source Separation and Independent Component Analysis: A Review. Neural Information Processing - Letters and Reviews, 6(1), 1-57, (2005).[bibtex]


  3. A Cichocki, S Shishkin, T Musha, Z Leonowicz, T Asada, T Kurachi EEG Filtering Based on Blind Source Separation (BSS) for Early Detection of Alzheimer’s Disease. Clinical Neurophysiology, 116(3), 729-737, (2005).[bibtex]


  4. A Cichocki, S Stansell, Z Leonowicz, J Buck Independent Variable Selection: Application of Independent Component Analysis to Forecasting a Stock Index. Journal of Asset Management, 6(4), 248-258, (2005).[bibtex]


  5. S Ding, A Cichocki, J Huang, D Wei Blind Source Separation of Acoustic Signals in Realistic Environments Based on ICA in the Time-frequency Domain. International Journal of Pervasive Computing and Communications, 1(2), 89-100, (2005).[bibtex]


  6. P Georgiev, F Theis, A Cichocki Sparse Component Analysis and Blind Source Separation of Underdetermined Mixtures. IEEE Transactions on Neural Networks, 16(4), 992-996, (2005).[bibtex]


  7. P-G Georgiev, F Theis, A Cichocki Optimization algorithms for sparse representations and applications. Optimization algorithms for sparse representations and applications 82 Mulitscale Optimization Methods and Applications, 85-99, (2005). [bibtex]


  8. P Georgiev, F Theis, A Cichocki, H Bakardjian Sparse Component Analysis: A New Tools for Data Mining. Springer Optimization and Its Applications 7 Data Mining in Biomedicine, 91-116, (2005). [bibtex]


  9. T Hoya, T Tanaka, A Cichocki, T Murakami, G Hori, J-A Chambers Stereophonic Noise Reduction Using a Combined Sliding Subspace Projection and Adaptive Signal Enhancement. IEEE Transactions on Speech and Audio Processing, 13(3), 309-320, (2005).[bibtex]


  10. J Karvanen A Resampling Test for the Total Independence of Stationary Time Series: Application to the Performance Evaluation of ICA Algorithms. Neural Processing Letters, 22(3), 311-324, (2005).[bibtex]


  11. M Kawamoto, K Kohno, Y Inouye Robust Super-exponential Methods for Deflationary Blind Source Separation of Instantaneous Mixtures. IEEE Transactions on Signal Processing, 53(5), 1933-1937, (2005).[bibtex]


  12. M Kawamoto, M Ohata, K Kohno, Y Inouye, AK Nandi Robust Super-Exponential Methods for Blind Equalization in the Presence of Gaussian Noise. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(10), 651-655, (2005).[bibtex]


  13. Z Leonowicz, J Karvanen, S Shishkin Trimmed Estimators for Robust Averaging of Event-related Potentials. Journal of Neuroscience Methods, 142(1), 17-26, (2005).[bibtex]


  14. Y Li, A Cichocki Non-negative Matrix Factorization and its Application in Blind Sparse Source Separation with Less Sensors than Sources. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 24(2), 695-706, (2005).[bibtex]


  15. Y Li, A Cichocki, J Qin Blind Identification and Deconvolution for Noisy Two-input Two-output Channels. Lecture Notes in Computer Science 3497 Advances in Neural Networks – ISNN 2005, 502-507, (2005). [bibtex]


  16. T Matsuki, G Hori, T Furuichi Gene Expression Profiling During the Embryonic Development of Mouse Brain Using an Oligonucleotide-based Microarray System. Molecular Brain Research, 136(1-2), 231-254, (2005).[bibtex]


  17. T Murakami, T Hoya, Y Ishida Speech Enhancement by Spectral Subtraction Based on Subspace Decomposition. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E88-A(3), 690-701, (2005).[bibtex]


  18. J Qin, Y Li, A Cichocki ICA and Committee Machine-based Algorithm for Cursor Control in a BCI System. Lecture Notes in Computer Science 3496 Advances in Neural Networks – ISNN 2005, 973-978, (2005). [bibtex]


  19. T Rutkowski, D Mandic Communicative Interactivity - A Multi-modal Communicative Situation Classification Approach. Lecture Notes in Computer Science 3697 Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, 741-746, (2005). [bibtex]


  20. S Shishkin, A Kaplan, H Bakardjian, A Cichocki Combining the Extremities on the Basis of Separation: a New Approach to EEG/ERP Source Localization. International Congress Series, 1278, 119-122, (2005).[bibtex]


  21. T Tanaka Generalized Weighted Rules for Principal Components Tracking. IEEE Transactions on Signal Processing, 53(4), 1243-1253, (2005).[bibtex]


  22. F Vialatte, A Cichocki, G Dreyfus, T Musha, S Shishkin, R Gervais Early Detection of Alzheimer’s Disease by Blind Source Separation, Time Frequency Representation, and Bump Modeling of EEG Signals. Lecture Notes in Computer Science 3696 Artificial Neural Networks: Biological Inspirations - ICANN 2005, 683-692, (2005). [bibtex]


  23. F Vialatte, A Cichocki, G Dreyfus, T Musha, S-L Shishkin, R Gervais Early Diagnosis of Alzheimer's Disease by Blind Source Separation, Time Frequency Representation, and Bump Modeling of EEG Signals. Lecture Notes in Computer Science 3696 Artificial Neural Networks: Biological Inspirations - ICANN 2005, 683-692, (2005). [bibtex]


2004
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. A Cichocki Blind Signal Processing Methods for Analyzing Multichannel Brain Signals. International Journal of Bioelectromagnetism, 6(1), online, (2004).[bibtex]


  2. A Cichocki Blind Signal Separation and Extraction: Recent Trends, Future Perspectives, and Applications. Lecture Notes in Computer Science 3070 Artificial Intelligence and Soft Computing - ICAISC 2004, 30-37, (2004). [bibtex]


  3. S-A Crucez-Alvarez, A Cichocki, S Amari From Blind Signal Extraction to Blind Instantaneous Signal Separation: Criteria, Algorithms and Stability. IEEE Transactions on Neural Networks, 15(4), 859-873, (2004).[bibtex]


  4. S Ding, Z Xin, C Wenxi, W Daming Derivation of Respiratory Signal from Single-channel ECGs Based on Source Statistics. International Journal of Bioelectromagnetism, 6(2), 41-47, (2004).[bibtex]


  5. S Ding, H Jie, W Daming Real-time Blind Source Separation of Acoustic Signals with a Recursive Approach. Lecture Notes in Computer Science 2773 Knowledge-Based Intelligent Information and Engineering Systems, 193-206, (2004). [bibtex]


  6. S Ding, J Huang, D Wei, S Omata Real-time Independent Component Analysis Based on Gradient Learning with Simultaneous Perturbation Stochastic Approximation. Lecture Notes in Computer Science 3214 Knowledge-Based Intelligent Information and Engineering Systems, 366-374, (2004). [bibtex]


  7. G Hori Framework of Constrained Matrix Gradient Flows. Lecture Notes in Computer Science 3195 Independent Component Analysis and Blind Signal Separation, 144-151, (2004). [bibtex]


  8. T Hoya Notions of Intuition and Attention Modeled by a Hierarchically Arranged Generalized Regression Neural Network. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34(1), 200-209, (2004).[bibtex]


  9. M Inoue, S Nishimura, G Hori, H Nakahara, M Saito, Y Yoshihara, S Amari Improved Parameter Estimation for Variance-stabilizing Transformation of Gene-expression Microarray Data. Journal of Bioinformatics and Computational Biology, 2(4), 669-679, (2004).[bibtex]


  10. Z Leonowicz Analysis of Non-Stationary Signals in Power Systems. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 23(2), 381-391, (2004).[bibtex]


  11. Y Li, A Cichocki, S Amari Analysis of Sparse Representation and Blind Source Separation. Neural Computation, 16(6), 1193-1234, (2004).[bibtex]


  12. Y Li, J Wang, A Cichocki Blind Source Extraction from Convolutive Mixtures in Ill-conditioned Multi-input Multi-output Channels. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(9), 1814-1822, (2004).[bibtex]


  13. Y Li, A Cichocki, L Zhang Blind Source Estimation of FIR Channels for Binary Sources: A Grouping Decision Approach. Signal Processing, 84(12), 2245-2263, (2004).[bibtex]


  14. Y Miyawaki, M Okada A Network Model of Perceptual Suppression Induced by Transcranial Magnetic Stimulation. Neural Computation, 16(2), 309-331, (2004).[bibtex]


  15. Y Miyawaki, M Okada Mechanism of Neural Interference by Transcranial Magnetic Stimulation: Network or Single Neuron?. Advances in Neural Information Processing Systems 16 1295-1302, (2004). [bibtex]


  16. T Tanaka, Y Yamashita The Generalized Lapped Pseudo-biorthogonal Transform: Oversampled Linear-phase Perfect Reconstruction Filter Banks with Lattice Structures. IEEE Transactions on Signal Processing, 52, 434-446, (2004).[bibtex]


  17. F-J Theis, W Nakamura Quadratic Independent Component Analysis. IEICE Trans. Fundamentals, E87-A(9), 2355-2363, (2004).[bibtex]


  18. L Zhang, A Cichocki, S Amari Self-adaptive Blind Source Separation Based on Activation Functions Adaptation. IEEE Transactions on Neural Networks, 15(2), 233-244, (2004).[bibtex]


  19. L Zhang, A Cichocki, S Amari Multichannel Blind Deconvolution of Nonminium-phase Systems Using Filter Decomposition. IEEE Transactions on Signal Processing, 52(5), 1430-1442, (2004).[bibtex]


  20. L Zhang, A Cichocki, S Amari Multichannel blind deconvolution of nonminimum-phase systems using filter decomposition. IEEE Transactions on Signal Processing, 52(5), 1430-1442, (2004).[bibtex]


2003
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. T. Aonishi and M. Okada, "Dynamically coupled oscillators: Cooperative behavior via dynamical interaction," Journal of the Physical Society of Japan, vol. 72, pp. 1334-1337, 2003.
     
  2. J. Cao, N. Murata, S. Amari, A. Cichocki, and T. Takeda, "A robust approach to independent component analysis of signals with high-level noise measurements," IEEE Transactions on Neural Networks, vol. 14, pp. 631-645, 2003.
     
  3. S. Choi, A. Cichocki, L. Zhang, and S. Amari, "Approximate maximum likelihood source separation using the natural gradient," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, no. 1, pp. 198-205, Jan. 2003. 
     
  4. A. Cichocki, "The laboratory for advanced brain signal processing - RIKEN BSI: Why it is, and how it came to be," Journal of Signal Processing, vol. 7, no. 4, pp. 295-302, 2003.
     
  5. A. Cichocki and P. G. Georgiev, "Blind source separation algorithms with matrix constraints," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, no. 1, pp. 522-531, Jan. 2003. 
     
  6. P. G. Georgiev and A. Cichocki, "Robust independent component analysis via time-delayed cumulant functions," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, pp. 573-579, 2003. 
     
  7. R. R. Gharieb and A. Cichocki, "Second-order statistics based blind source separation using a bank of subband filters," Digital Signal Processing, vol. 13, pp. 252-274, 2003. 
     
  8. R. Hayashi, Y. Miyawaki, T. Maeda, and S. Tachi, "Unconscious adaptation: a new illusion of depth induced by stimulus features without depth," Vision Research, vol. 43, pp. 2773-2782, 2003.
     
  9. T. Hoya, "On the capability of accommodating new classes within probabilistic neural networks," IEEE Transactions on Neural Networks, vol. 14, pp. 450-453, 2003.
     
  10. Y. Konno, J. Cao, T. Arai, and T. Takeda, "Visualization of brain activities of single-trial and averaged multiple-trials MEG data," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, pp. 2294-2301, 2003.
     
  11. Z. Leonowicz, T. Lobos, and J. Rezmer, "Advanced spectrum estimation methods for signal analysis in power electronics," IEEE Transactions on Industrial Electronics, vol. 50, pp. 514-519, 2003.
     
  12. Y. Li, A. Cichocki, and L. Zhang, "Blind separation and extraction of binary sources," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, no. 3, pp. 580-589, 2003. 
     
  13. Y. Miyawaki and M. Okada, "A network model of inhibitory effects induced by transcranial magnetic stimulation," Neurocomputing, vol. 52/54, pp. 837-842, 2003.
     
  14. H. Nakahara, S. Nishimura, M. Inoue, G. Hori, and S. Amari, "Gene interaction in DNA microarray data is decomposed by information geometric measure," Bioinformatics, vol. 19, pp. 1124-1131, 2003.
     
  15. W. Nakamura, "Quadratic forms in natural images," Network: Computation in Neural Systems, vol. 14, pp. 765-788, 2003
     
  16. T. Tanaka, T. Saito, and Y. Yamashita, "A time-varying subband transform with projection-based reconstruction," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, pp. 1935-1941, 2003.
     
  17. T. Tanaka and Y. Yamashita, "A biorthogonal transform with overlapping and non-overlapping basis functions for image coding," IEEE Transactions on Signal Processing, vol. 51, pp. 732-743, 2003. 
2002
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. T. Aonishi, K. Kurata, and M. Okada, "Acceleration effect of coupled oscillator systems," Physical Review E, vol. 65, pp. 046223-1-046223-18, 2002.
     
  2. T. Aonishi and M. Okada, "Multibranch entrainment and slow evolution among branches in coupled oscillators," Physical Review Letters, vol. 88, no. 2, pp. 024102-1-024102-4, 2002.
     
  3. H. Bakardjian, A. Uchida, H. Endo, and T. Takeda, "Magnetoencephalographic study of speed-dependent responses in apparent motion," Clinical Neurophysiology, vol. 113, pp. 1586-1597, 2002.
     
  4. A. K. Barros, T. M. Rutkowski, F. Itakura, and N. Ohnishi, "Estimation of speech embedded in a reverberant and noisy environment by independent component analysis and wavelets," IEEE Transactions on Neural Networks, vol. 13, no. 4, pp. 888-893, July 2002.
     
  5. J. Cao, N. Murata, S. Amari, A. Cichocki, and T. Takeda, "Independent component analysis for unaveraged single-trial MEG data decomposition and single-dipole source localization," Neurocomputing, vol. 49, pp. 255-277, 2002.
     
  6. S. Choi, A. Cichocki, and S. Amari, "Equivariant nonstationary source separation," Neural Networks, vol. 15, pp. 121-130, 2002.
      
  7. S. Choi, A. Cichocki, and A. Belouchrani, "Second order nonstationary source separation," Journal of VLSI Signal Processing, vol. 32, no. 1-2, pp. 93-104, Aug. 2002.
     
  8. S. A. Cruces-Alvarez, A. Cichocki, and S. Amari, "On a new blind signal extraction algorithm: Different criteria and stability analysis," IEEE Signal Processing Letters, vol. 9, no. 8, pp. 233-236, Aug. 2002. 
     
  9. S. A. Cruces-Alvarez, L. Castedo, and A. Cichocki, "Robust blind source separation algorithms using cumulants," Neurocomputing, vol. 49, pp. 87-118, Dec. 2002.
     
  10. A. Funase, T. Yagi, A. K. Barros, Y. Kuno, and Y. Uchikawa, "Analysis on saccade-related EEG with independent component analysis," International Journal of Applied Electromagnetics and Mechanics, vol. 14, pp. 353-358, 2002.
     
  11. W. Hashimoto, "Separation of independent components from data mixed by several mixing matrices," Signal Processing, vol. 82, pp. 1949-1961, 2002.
     
  12. S. Kawaguchi, "Oscillation of the overlap parameter in a phase coupled model," Progress of Theoretical Physics, vol. 107, pp. 839-860, 2002.
     
  13. S. Kawaguchi, "Dynamics of sequence-associative memory for discrete maps in xy spin systems," Progress of Theoretical Physics, vol. 108, pp. 641-668, 2002.
     
  14. S. Vorobyov and A. Cichocki, "Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis," Biological Cybernetics, vol. 86, no. 4, pp. 293-303, Apr. 2002.
     
  15. L. Zhang, A. Cichocki and  S. Amari, "Geometrical structures of FIR manifold and their application to multichannel blind deconvolution," Journal of VLSI Signal Processing, vol. 31, pp. 31-44, 2002. 
2001
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. A. K. Barros and A. Cichocki, "Extraction of specific signals with temporal structure," Neural Computation, vol. 13, no. 9, pp. 1995-2003, Sept. 2001.
     
  2. S. Choi and A. Cichocki, "Blind equalization via approximate maximum likelihood source separation," Electronics Letters, vol. 37, no. 1, pp. 61-62, Jan. 2001.
     
  3. S. Choi and A. Cichocki, "Algebraic differential decorrelation for nonstationary source separation," Electronics Letters, vol. 37, no. 23, pp. 1414-1415, Nov. 2001.
     
  4. R. R. Gharieb and A. Cichocki, "Segmentation and tracking of the electro-encephalogram signal using an adaptive recursive bandpass filter," Medical & Biological Engineering & Computing, vol. 39, pp. 237-248, 2001.
     
  5. R. R. Gharieb and A. Cichocki, "Noise reduction in brain evoked potentials based on third-order correlations," IEEE Transactions on Biomedical Engineering, vol. 48, pp. 501-512, 2001. 
     
  6. G. Hori, K. Aihara, Y. Mizuno, and Y. Okuma, "Blind source separation and chaotic analysis of EEG for judgment of brain death," Artificial Life Robotics, vol. 5, pp. 10-14, 2001.
     
  7. G. Hori, M. Inoue, S. Nishimura, and H. Nakahara, "Blind gene classification: An application of a signal separation method," Genome Informatics, vol. 12, pp. 255-256, 2001.
     
  8. T. Hoya and J. A. Chambers, "Heuristic pattern correction scheme using adaptively trained generalized regression neural networks," IEEE Transactions on Neural Networks, vol. 12, pp. 91-100, 2001.
     
  9. N. Iannella and A. D. Back, "A spiking neural network architecture for nonlinear function approximation," Neural Networks, vol. 14, pp. 933-939, 2001.
     
  10. R. Rosipal, M. Girolami, L. J. Trejo, and A. Cichocki, "Kernel PCA for feature extraction and de-noising in nonlinear regression," Neural Computing & Applications, vol. 10, pp. 231-243, 2001.
      
  11. S. A. Vorobyov and A. Cichocki, "Hyper radial basis function neural networks for interference cancellation with nonlinear processing of reference signal," Digital Signal Processing, vol. 11, no. 3, pp. 204-221, July 2001.
     
  12. S. A. Vorobyov, A. Cichocki, and Y. V. Bodyanskiy, "Adaptive noise cancellation for multi-sensory signals," Fluctuation and Noise Letters, vol. 1, no. 1, pp. R13-R24, 2001.
     
  13. L. Zhang, S. Amari, and A. Cichocki, "Semiparametric model and superefficiency in blind deconvolution," Signal Processing, vol. 81, pp. 2535-2553, 2001.
2000
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. S. Amari, T. Chen, and A. Cichocki, "Nonholonomic orthogonal learning algorithms for blind source separation," Neural Computation, vol. 12, pp. 1463-1484, 2000. 
     
  2. A. Belouchrani and A. Cichocki, "Robust whitening procedure in blind source separation context," Electronics Letters, vol. 36, no. 24, pp. 2050-2053, 2000. 
     
  3. Y. V. Bodyanskiy and S. A. Vorobyov, "Recurrent neural network detecting changes in the properties of nonlinear stochastic sequences," Automation and Remote Control, vol. 61, no. 7, pp. 1113-1124, 2000.
     
  4. J. Cao, A. Cichocki, and S. Tanaka, "Self-scaling and self-adaptive compact time-delay neural network for dynamical nonlinear and nonstationary system identification," Journal of Signal Processing, vol. 4, no. 1, pp. 37-43, 2000.
     
  5. J. Cao, N. Murata, S. Amari, A. Cichocki, T. Takeda, H. Endo, and N. Harada, "Single-trial magnetoencephalographic data decomposition and localization based on independent component analysis approach," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E83-A, no. 9, pp. 1757-1766, 2000.
     
  6. J. Cao, N. Murata, and A. Cichocki, "Independent component analysis algorithm for online blind source separation and blind equalization systems," Journal of Signal Processing, vol. 4, no. 2, pp. 131-140, Mar. 2000.
     
  7. S. Choi, S. Amari, and A. Cichocki, "Natural gradient learning for spatio-temporal decorrelation: Recurrent network," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E83-A, no. 12, pp. 2715-2722, Dec. 2000. 
     
  8. S. Choi and A. Cichocki, "Blind separation of nonstationary sources in noisy mixtures," Electronics Letters, vol. 36, no. 9, pp. 848-849, Apr. 2000. 
     
  9. S. Choi, A. Cichocki, and S. Amari, "Flexible independent component analysis," Journal of VLSI Signal Processing, vol. 26, pp. 25-38, 2000. 
     
  10. A. Cichocki and R. Thawonmas, "On-line algorithm for blind signal extraction of arbitrarily distributed, but temporally correlated sources using sencond order statistics," Neural Processing Letters, vol. 12, pp. 91-98, Aug. 2000.
     
  11. S. A. Cruces-Alvarez, A. Cichocki, and L. Castedo-Ribas, "An iterative inversion approach to blind source separation," IEEE Transactions on Neural Networks, vol. 11, no. 6, pp. 1423-1437, 2000. 
     
  12. A. Date, C. Hwang, and S. Sheu, "On the number of equilibrium states in weakly coupled random networks," Statistics & Probability Letters, vol. 49, pp. 291-297, 2000.
     
  13. R. R. Gharieb, "Higher order stastics based IIR notch filtering scheme for enhancing sinuoids in colored noise," IEE Proceedings of Visual Image Signal Processing, vol. 147, no. 2, pp. 115-121, 2000.
     
  14. G. Hori, "Isospectral gradient flows for non-symmetric eigenvalue problem," The Japan Journal of Industrial and Applied Mathematics, vol. 17, no. 1, pp. 27-42, 2000.
     
  15. S. Kawaguchi, "Stability gap between off- and on-firing states in a coupled Ginzburg-Landau oscillator neural network," Progress of Theoretical Physics, vol. 104, no. 4, pp. 709-721, Oct. 2000.
     
  16. T. Lobos, P. Kostyla, Z. Waclawek, and A. Cichocki, "Adaptive neural networks for robust estimation of signal parameters," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 19, pp. 903-904, 2000.
     
  17. L. Zhang and A. Cichocki, "Blind deconvolution of dynamical systems: A state-space approach," Journal of Signal Processing, vol. 4, no. 2, pp. 111-130, Mar. 2000. 
1999
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. T. Aonishi, K. Kurata, and M. Okada, "A statistical mechanics of an oscillator associative memory with scattered natural frequencies," Physical Review Letters, vol. 82, no. 13, pp. 2800-2803, 1999.
     
  2. A. D. Back, B. G. Horne, A. C. Tsoi, and C. Lee Giles, "Alternative discrete-time operations: An algorithm for optimal selection of parameters," IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2612-2615, Sept. 1999.
     
  3. E. Bodyanskiy, S. Vorobyov, and A. Stephan, "Algorithm for adaptive identification of dynamical parametrically nonstationary objects," Journal of Computer and Systems Sciences International, no. 1, pp. 19-23, 1999.
     
  4. Y. V. Bodyanskiy, S. A. Vorobyov, and V. A. Timofeev, "Adaptive recognition of the states of dynamical object with periodic output signal," Pattern Recognition and Image Analysis, vol. 9, no. 3, pp. 505-509, 1999.
     
  5. S. Choi, "Linear neural networks with FIR synapses for blind deconvolution and equalization," Journal of Electrical Engineering and Information Science, vol. 4, no. 2, pp. 224-231, Apr. 1999.
     
  6. S. Choi and A. Cichocki, "An unsupervised hybrid network for blind separation of independent non-gaussian source signals in multipath environment," Journal of Communications and Networks, vol. 1, no. 1, pp. 19-25, Mar. 1999.
     
  7. S. Choi and A. Cichocki, "Hybrid learning approach to blind deconvolution of linear mimo systems," Electronics Letters, vol. 35, no. 17, pp. 1429-1430, 1999. 
     
  8. A. Cichocki, J. Karhunen, W. Kasprzak, and R. Vigario, "Neural networks for blind separation with unknown number of sources," Neurocomputing, vol. 24, pp. 55-93, 1999.
     
  9. S. C. Douglas, A. Cichocki, and S. Amari, "Self-whitening algorithms for adaptive equalization and deconvolution," IEEE Transactions on Signal Processing, vol. 47, no. 4, pp. 1161-1165, Apr. 1999. 
     
  10. R. R. Gharieb, "Cumulant-based lp method for two-dimentional spectral estimation," IEE Proceedings of Visual Image Signal Processing, vol. 146, no. 6, pp. 307-312, 1999.
     
  11. S. Kawaguchi and M. Mimura, "Collision of traveling waves in a reaction-diffusion system with global coupling effect," SIAM Journal of Applied Mathematics, vol. 59, no. 3, pp. 920-941, 1999.
     
  12. S. Osowski and A. Cichocki, "Learning dynamic neural networks using signal flow graphs," International Journal of Circuit Theory and Applications, vol. 27, pp. 209-228, Apr. 1999.
     
  13. R. Thawonmas and A. Cichocki, "Blind signal extraction of arbitrarily distributed, but temporally correlated signals: A neural network approach," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E82-A, no. 9, pp. 1834-1844, Sept. 1999.
     
  14. S. Vorobyov and E. Bodyanskiy, "On one non-parametric algorithm for smoothing parameter control in adaptive filtering," Engineering Simulation, vol. 16, no. 3, pp. 341-350, 1999.
     
  15. L. Zhang, A. Cichocki, and S. Amari, "Natural gradient algorithm for blind separation of overdetermined mixture with additive noise," IEEE Signal Processing Letters, vol. 6, no. 11, pp. 293-295, 1999. 
1998
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. S. Amari and A. Cichocki, "Adaptive blind signal processing: Neural network approaches," Proceedings of the IEEE, vol. 86, no. 10, pp. 2026-2048, Oct. 1998.
     
  2. A. Back and A. Tsoi, "A low-sensitivity recurrent neural network," Neural Computation, vol. 10, no. 1, pp. 165-188, 1998.
     
  3. S. Choi and A. Cichocki, "Cascade neural networks for multichannel blind deconvolution," Electronics Letters, vol. 34, no. 12, pp. 1186-1187, 1998. 
     
  4. S. Choi, R. Liu, and A. Cichocki, "A spurious equilibria-free learning algorithm for the blind separation of non-zero skewness signals," Neural Processing Letters, vol. 7, no. 2, pp. 61-68, Jan. 1998. 
     
  5. A. Cichocki, "Blind identification and separation of noisy source signals-neural network approaches," ISCIE Journal, vol. 42, no. 2, pp. 63-73, 1998.
     
  6. A. Cichocki, S. C. Douglas, and S. Amari, "Robust techniques for independent component analysis (ICA) with noisy data," Neurocomputing, vol. 22, no. 1-3, pp. 113-129, Nov. 1998. 
     
  7. A. Cichocki, P. Kostyla, T. Lobos, and Z. Waclawek, "Neural networks for real-time estimation of parameters of signals in power systems," International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, vol. 6, no. 3, pp. 131-140, 1998.
     
  8. A. Cichocki and R. Unbehauen, "Neural networks for optimization and signal processing," Journal of Signal Processing, vol. 2, pp. 62-63, 1998.
     
  9. S. C. Douglas, A. Cichocki, and S. Amari, "Bias removal technique for blind source separation with noisy measurements," Electronics Letters, vol. 34, no. 14, pp. 1379-1380, July 1998.
     
  10. M. Girolami, A. Cichocki, and S. Amari, "A common neural-network model for unsupervised exploratory data analysis and independent component analysis," IEEE Transactions on Neural Networks, vol. 9, no. 6, pp. 1495-1501, 1998. 
     
  11. R. Thawonmas, A. Cichocki, and S. Amari, "A cascade neural network for blind signal extraction without spurious equilibria," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E81-A, no. 9, pp. 1833-1846, Sept. 1998.
     
  12. H. H. Yang, S. Amari, and A. Cichocki, "Information-theoretic approach to blind separation of sources in non-linear mixture," Signal Processing, vol. 64, no. 3, pp. 291-300, 1998.
1997
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. M. Adachi and K. Aihara, "Associative dynamics in a chaotic neural network," Neural Networks, vol. 10, no. 1, pp. 83-98, Jan. 1997.
     
  2. S. Amari, T. Chen, and A. Cichocki, "Stability analysis of learning algorithms for blind source separation," Neural Networks, vol. 10, no. 8, pp. 1345-1351, 1997.
     
  3. A. D. Back and A. S. Weigend, "A first application of independent component analysis to extracting structure from stock returns," International Journal of Neural Systems, vol. 8, no. 4, pp. 473-484, Aug. 1997.
     
  4. J. Cao and T. Yahagi, "Parallel nonlinear adaptive digital filters using recurrent neural networks," Electronics and Communications in Japan, vol. 80, no. 3, pp. 868-877, 1997.
     
  5. A. Cichocki, S. Amari, and J. Cao, "Neural network models for blind separation of time delayed and convolved signals," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E80-A, no. 9, pp. 1595-1603, 1997.
     
  6. A. Cichocki and A. Bargiela, "Neural networks for solving linear inequality systems," Parallel Computing, vol. 22, pp. 1455-1475, 1997.
     
  7. A. Cichocki, R. Bogner, L. Moszcynski, and K. Pope, "Modified Herault-Jutten algorithms for blind separation of sources," Digital Signal Processing, vol. 7, no. 2, pp. 80-93, Apr. 1997.
     
  8. A. Cichocki, R. Thawonmas, and S. Amari, "Sequential blind signal extraction in order specified by stochastic properties," Electronics Letters, vol. 33, no. 1, pp. 64-65, Jan. 1997.
     
  9. S. C. Douglas and A. Cichocki, "Neural networks for blind decorrelation of signals," IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2829-2842, Nov. 1997. 
     
  10. S. C. Douglas and C. A., "On-line step size selection for training adaptive systems," IEEE Signal Processing Magazine, vol. 14, no. 6, pp. 45-46, Nov. 1997.
     
  11. J. Karhunen, A. Cichocki, W. Kasprzak, and P. Pajunen, "On neural blind separation with noise suppression and redundancy reduction," International Journal of Neural Systems, vol. 8, no. 2, pp. 219-237, 1997.
     
  12. W. Kasprzak, A. Cichocki, and S. Amari, "Blind source separation with convolutive noise cancellation," Neural Computing & Applications, vol. 6, pp. 127-141, Nov. 1997.
     
  13. S. Lawrence, C. Lee Giles, A. C. Tsoi, and A. D. Back, "Face recoginition: a hybrid neural network approach," IEEE Transactions on Neural Networks, vol. 8, no. 1, pp. 98-113, 1997.
     
  14. S. Lawrence, A. D. Back, A. C. Tsoi, and C. Lee Giles, "On the distribution of performance from multiple neural-network trials," IEEE Transactions on Neural Networks, vol. 8, pp. 1507-1517, 1997.
     
  15. F. Luo, R. Unbehauen, and A. Cichocki, "A minor component analysis algorithm," Neural Networks, vol. 10, no. 2, pp. 291-297, Mar. 1997.
     
  16. S. Osowski and A. Cichocki, "Ladder network design through optimization," Bull. of Polish Academy of Sciences, vol. 45, pp. 403-415, 1997.
     
  17. R. Thawonmas and S. Abe, "A novel approach to feature selection based on analysis of class regions," IEEE Transactions on Systems, Man, and Cybernetics B, vol. 27, no. 2, pp. 196-207, Apr. 1997.
     
  18. A. Tsoi and A. Back, "Discrete time recurrent neural network architectures: A unifying review," Neurocomputing, vol. 15, no. 3 and 4, pp. 183-223, 1997.
1996
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. A. Cichocki and W. Kasprzak, "Nonlinear learning algorithms for blind separation of natural images," Neural Network World, vol. 6, no. 4, pp. 515-523, 1996. 
     
  2. A. Cichocki and R. Unbehauen, "Robust neural networks with on-line learning for blind identification and blind separation of sources," IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications, vol. 43, pp. 894-906, Nov. 1996.
     
  3. A. Cichocki, R. Unbehauen, K. Weinzierl, and R. Hoelzel, "A new neural network for solving linear programming problems," European Journal of Operational Research, vol. 9, pp. 244-256, 1996.
     
  4. E. S. Chng, S. Chen, and B. Mulgrew, "Gradient radial basis function for nonlinear and nonstationary time series prediction," IEEE Transactions on Neural Networks, vol. 7, no. 1, pp. 190-194, 1996.
     
  5. E. S. Chng, H. Yang, and W. Skarbek, "Reduced complexity implementation of the bayesian equalizer using local RBF network for channel equalization problem," Electronics Letters, vol. 32, no. 1, pp. 17-19, 1996. 
     
  6. S. C. Douglas, A. Cichocki, and S. Amari, "Fast-convergence filtered regressor algorithms for blind equalization," Electronics Letters, vol. 32, no. 23, pp. 2114-2115, Nov. 1996.
     
  7. K. Glass, M. Adachi, and A. Mees, "Noise tolerance of the AGOY control method for stabilizing chaotic systems," International Journal of Bifurcations and Chaos, vol. 6, no. 7, pp. 1333-1340, July 1996.
     
  8. A. Krzyzak, "On nonparametric estimation of nonlinear dynamic systems by the fourier series estimate," Signal Processing, vol. 52, pp. 299-321, 1996.
     
  9. M. J. Ogorzalek, Z. Galias, A. Dabrowski, and W. Dabrowski, "Wave propagation, pattern formation and memory effects in large arrays of interconnected chaotic circuits," International Journal of Bifurcation and Chaos, vol. 6, no. 10, pp. 1859-1871, 1996.
     
  10. S. Osowski, P. Bojarczak, and M. Stodolski, "Fast second order learning algorithm for feedforward multi-layer neural networks and its applications," Neural Networks, vol. 9, pp. 1583-1596, 1996. 
     
  11. W. Skarbek, "Banach constructor and image compression - theoretical foundations of computer vision," Computing, vol. Suppl. 11, pp. 167-182, 1996.
     
  12. W. Skarbek and A. Cichocki, "Image associative memory by recurrent neural subnetworks," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E79-A, no. 10, pp. 1638-1646, 1996. 
     
  13. W. Skarbek and A. Cichocki, "Robust image association by recurrent neural networks," Neural Processing Letters, vol. 3, no. 3, pp. 131-138, 1996.
     
  14. W. Skarbek, A. Cichocki, and W. Kasprzak, "Principal subspace analysis for incomplete image data in one learning epoch," Neural Network World, vol. 6, no. 3, pp. 375-382, 1996. 
     
  15. W. Skarbek and K. Ignasiak, "Fast VQ codebook search in KLT space," Neural Network World, vol. 6, no. 3, pp. 383-386, 1996. 
     
  16. W. Skarbek and K. Ignasiak, "Asynchronous nonlinear fractal operators and their applications," Image Processing and Communications, vol. 2, no. 2, pp. 3-20, 1996.
     
  17. R. Thawonmas and S. Abe, "Extraction of fuzzy rules for classification based on partitioned hyperboxes," Journal of Intelligent and Fuzzy Systems, vol. 4, no. 3, pp. 215-226, 1996.
1995
COPYRIGHT NOTICE
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  1. A. Cichocki, T. Kaczorek, and J. Mazurek, "Analog neural networks for solving in real-time linear inverse and total least squares problems," Journal of Applied Mathematics and Computation Science, vol. 5, no. 1, pp. 105-138, 1995.
     
  2. A. Cichocki, R. Unbehauen, M. Lendl, and K. Weinzierl, "Neural networks for linear inverse problems with incomplete data especially in applications to signal and image reconstruction," Neurocomputing, vol. 8, pp. 7-41, 1995.
     
  3. M. J. Ogorzalek, Z. Galias, A. Dabrowski, and W. Dabrowski, "Chaotic waves and spatio-temporal patterns in large arrays of doubly-coupled Chua's circuits," IEEE Transactions on Circuits and Systems, vol. CAS-41, no. 10, pp. 706-714, 1995.
     
  4. W. Skarbek, "On convergence of affine fractal operators," Image Processing and Communications, vol. 1, no. 1, pp. 33-41, 1995. 
How to reach us



©1997-2015 Laboratory for Advanced Brain Signal Processing
updated: 2015-05-27