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Abstract— In this paper we derive and analyze
un-supervised adaptive on - line algorithms for instan-
taneous blind separation of sources (BSS) in the case
when sensors signals are noisy and they are mixture of
unknown number of independent source signals with
unknown statistics. Nonlinear activation functions are
rigorously derived assuming that source have general-
ized Gaussian, Cauchy or Rayleigh distributions. Ex-
tensive computer simulations confirmed that the pro-
posed family of learning algorithms are able to sepa-
rate sources from mixture of sub and super-Gaussian
sources.

I. INTRODUCTION

The problem of independent component analy-
sis (ICA) and/or blind separation or extraction of
source signals from their mixtures has become in-
creasingly important due to still some opened theo-
retical problems and many potential applications, e.g.
in speech recognition and enhancements, telecommu-
nication and biomedical signal analysis and process-
ing (EEG, MEG, ECG). While several recently devel-
oped algorithms have shown promise to solve prac-
tical tasks, they may fail to separate on-line (non-
stationary) signal mixtures containing both sub- and
super-Gaussian distributed source signals, especially
when number of sources is unknown and change dy-
namically over the time. The problem of on-line es-
timation of sources in the case when the number of
sources is unknown is relevant in many practical ap-
plications like analysis of EEG signals and ”cocktail
party problem” where the number of source signals
change usually over the time. In this paper we pro-
pose solution to this problem under assumption that
the number of sources is less or equal to the number
of sensors.

Mathematically the problem is formulated as fol-
lows: the mixing model is described by matrix equa-

tion [1]- [17]
x(k) = H(k)s(k) + v(k), (1)

where s(k) is an n-dimensional vector of unknown
stochastically independent of source signals, x(k) is
am m - dimensional observable sensor vector, (with
m > n), H(k) is a full rank m x n mixing matrix
and v(k) is m dimensional uncorrelated with sources
Gaussian noise vector. It is assumed that only the
sensor vector is available and is necessary to design
a feed-forward neural network and associated adap-
tive learning algorithm which enables estimation of
sources and/or identification of mixing matrix H with
good tracking abilities. The problem is often referred
as noisy ICA (independent component analysis): the
ICA of a noisy random vector x = [z - - - .| is ob-
tained by finding an n x m, full rank, linear transfor-
mation (un-mixing) matrix W such that the output
signal vector y = [y;---yn]T, defined as y = Wx
contains component that are as independent as pos-
sible, as measured by an information - theoretic cost
function such as minimum Kullback - Leibler diver-
gence. In other words, it is required to adapt the
synaptic weights of w;; of m x m matrix W of a
linear system y(t) = W (t)x(t) (often referred to as
a single-layer feed-forward neural network) to com-
bine the observation z;(t) to form estimates of source
signals §;(t) = y;(t) = >, wj;z;(t). The optimal
weights correspond to the statistical independence of
output signals y;(t).
II. DERIVATION OF BASIC ADAPTIVE
ALGORITHMS

In order, to solve the above formulated ICA prob-
lems a key task is to formulate appropriate loss (cost)
function which should be the function of the parame-
ters of the specified neural network model. Minimiza-
tion of such loss function should lead to satisfy desired
conditions (stochastic independence and/or temporal



and spatial mutual de-correlation) of the output ex-
tracted signals. Recently several researchers (see e.g.
Amari [1, 2, 3], Inouye [15], Matsuoka [17], Cardoso
[7], Bell and Sejnowski [6], Girolami and Fyfe [14])
proposed useful criteria and loss functions (called also
contrast, cost or energy functions) for BSS. Differen-
tial entropy maximization (DEM), independent com-
ponent analysis (ICA) and maximization of likelihood
(ML) lead to the same type of expected loss function
which is measure of mutual stochastic independence of
output signals [6, 12, 3, 7]. The natural gradient search
method developed by Amari [1, 2, 3] has emerged as a
particularly-useful technique for solving iterative opti-
mization problems. The suitable expected loss or risk
function could be defined as Kullback-Leibler diver-
gence [1, 3]

B, W) = - [n0)0g 200y, (@)
prm(y)
where p, (y) is the joint probability distribution of out-
put signals and pas(y) = [[ pi(v:) is the marginal dis-
tribution of p,(y, W).
Such risk function, which is in fact, equal to mutual
information among outputs components of y leads to
a simple loss (cost) function

P(y, W) = —log det( W' W) — ZIngi(yi), (3)

where p;(y;) are probability density functions (p.d.f.)
of output signals, det(W) means the determinant of
matrix W and ()7 is a transpose operator. Taking
into account that gradient of the loss function can ex-
pressed as

Ip(W)
oW

and applying natural gradient approach developed by
Amari we can derive basic learning rule [1, 3, 4, 8, 10]

AW(E) = W(k+1)— W(k) = _nag(v\:]sr)

= n(k)[Ak) — £(y(k))y" (K)]W(k), (5)

where A(k) = diag{\i(k)---An(k)} is any positive-
definite diagonal scaling matrix, eg. A = I or
A(k) = 0% + diag{f(y(k))yT(k)} (where o2 repre-
sents variance of additive Gaussian noise) and f(y) =
[Filyr),- - Fa(ya)]T with nonlinearities fi(y:) =
—dlog(pi(yi))/dy: = —pi(y:)/pi(ys)-
Alternatively, we can use the following
conditioning) filtering gradient [5, 8, 10] :

w2

n(k)[A(k) — y (K)E(y™ (k)] W (k). (6)

Vwe(W) = = f(y)x" - W(WTW)™! (4)

wiw

(pre-

AW (k)

The above two learning rule could be combined to-
gether to build up more general and flexible (universal)
learning rule (see Cichocki at al. [8, 10]:

AW (k) = n(k)[A(k) — fly (k)]e(y" (K)IW(k), (7)

where f(y) and g(y) are suitably designed nonlinear
functions. In the special case when the number of
sources is known we can assume that un-mixing matrix
W is n xm, however, in the general case when number
of sources is unknown we assume that W is m x m
quadratic matrix.
III. DESIGN OF ACTIVATION
FUNCTIONS

The performance of the learning algorithms strongly
depends on shape of activation functions. Optimal
selection of nonlinearities depend on p.d.f. of source
signals. It can be proved that for specific nonlinear-
ity f(y;) = auy; + tanh(v;y;) the learning rule (5)
is able to successfully separate signals if all of them
are super-Gaussian signals while the learning rule (6)
could separate them if all of them are sub-Gaussian
signals. Analogously for f(y;) = a;y; + y3 algorithm
(5) separates sub-Gaussian signals while the algorithm
(6) super-Gaussian signals. However, if the measured
signals z;(k) contains mixtures of both sub-Gaussian
and super-Gaussian sources then these algorithms may
fail to separate these signals reliably (cf. [13, 14]).

In this paper we propose a new rigorous strategy for
design flexible, near optimal activation functions that
enable source signals from arbitrary non -Gaussian dis-
tributions to be extracted from the measurements of
the mixed signals.

Let us assume that source signals have generalized
Gaussian distributions of the form: p;(y;) = exp(Ao; —

1) exp (_)\u |y;|;">, where Lagrange multipliers and
variance are expressed as follows: exp(Ag; — 1) =
etz M= Y ot = (yil®).

The locally optimal flexible normalized nonlinear ac-
tivation functions can be expressed in such case as

_ dlog(pi(yi))

qi_lSi n\y; q; >1. (8
d; gn(y;) ¢ >1. (8)

filyi) =

= |yz

The parameter g; can change from 1 (Laplace distribu-
tion, through ¢; = 2 - standard Gaussian distribution)
to ¢; going to infinity (for uniform distribution). In
the general case, when we do not have a priory knowl-
edge about distribution of sources we can start from
standard Gaussian density (¢; = 2 - linear activation
functions) and adaptively change these parameters de-
pending on estimated distance of density of actual out-
put signals y;(k) from Gaussianity.

Analogous nonlinearity can be derived, for example,
for generalized Cauchy distribution as f;(y;) = [(ve; +



1)/(v|A(p)|% + |y:|%)]|y:|% 'sign(y;) and for general-
ized Rayleigh distribution as f;(y;) = |y;|% 2y; for
complex - valued signals and coefficients.
Alternatively, we can consider a novel ‘robust’ gener-
alized Gaussian distributions

pi(y;) = €X' exp (_/\u | log(COShETﬂziyi))/ﬂi qi) (9)

(3

where o7 = (log(cosh(B;y:))/8:), B1 > 2.
Such model of p.d.f. (for ¢; = 1) is especially use-

ful for noisy natural speech signals. For small vari-
ance of the signal y we have log(cosh(By))/8 ~ y? so
we can approximate the distribution (9) by the stan-

dard Gaussian distribution p,(y) = \/21—770 exp (—%)

where 02 = (y?) (silent period). For large variance
of the signal log(cosh(By))/B = |y| so we can ap-
proximate the distribution (9) by Laplace distribution

Py(y) = 32 exp (4 ) where o® = (Jyl).

Using this model and Amari’s natural gradient ap-
proach for noisy data we derived a new algorithm of
the form (7) with entries of diagonal matrix A(k) as
1
Ai(k) = of + 3 log(cosh(Biyi(k))) (10)
K2

and flexible (adaptive) nonlinear activation functions

_ Jtanh(Biy;) for ka(yi) > 6

fz(yz) = {yz for K4(yi) <54 (11)
_ Jui for ka(ys) > -6

oilvi) = {tanh(@yﬁ) for na(y) < -5,

where r4(y;) = E{y}}/E*{y?} — 3 is normalized value
of kurtosis and § > 0 is a threshold. The value of
kurtosis can be evaluated on-line as

B{y(k+ 1)} = (1 = n)E{y?(k)} + nlyi|* (¢ =2,4)

The above learning algorithm (7), (10)-(13) monitors
and estimates the statistics of each output signal and
depending on sign or value of its normalized kurto-
sis automatically select (or switch) suitable nonlin-
ear activation functions, such that successful (stable)
separation of all non-Gaussian source signals is pos-
sible. In this approach activation function are adap-
tive time-varying nonlinearities. It can be shown by
mathematical analysis and computer simulation ex-
periments that it is sufficient to use robust (in re-
spect to outliers and spiky noise) nonlinearities of the
form: f;(y;) = tanh(B;y;) or gi(y;) = tanh(B;y;) and
it is not necessary to use nonlinearities of the form
fi(yi) = sign(y;)|y;|%~! which are rather very sensi-
tive to outliers for ¢; > 3.
IV. COMPUTER SIMULATIONS

Extensive computer simulation experiments confirm
validity and high performance of the proposed algo-
rithms In the case where m > n and mixing sensors

are noiseless the n of output signals estimate all n un-
known sources, while the additional (m — n) outputs
decay quickly to zero.
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Fig.1 Exemplary computer simulation results

In more realistic scenario of noisy sensor signals the
additional (m —n) outputs collects only additive noises



(under condition that the noise is not too large, usu-
ally less than 3%) while the other outputs estimates
the desired source signals with reduced noise. This fea-
ture is very desirable property of the proposed learn-
ing algorithms. Fig.1 illustrates typical simulation re-
sults. Three unknown acoustical signals (two natu-
ral speech signals with positive kurtosis and a single
tone signal with negative kurtosis) where mixed us-
ing randomly selected 7 x 3 full rank mixing matrix
H. To sensors signals were added 2% i.i.d. Gaussian
noises. The mixing matrix, the number of sources as
well as their statistics were assumed to be completely
unknown. The learning algorithm (7), (10) - (13) with
self- adaptive learning rate n(k) [9] and parameters
02 = 0.025, § = 0.1 and fixed B; = 10 Vi was able
successfully estimate the number of active sources and
their waveforms and also to ‘shift’ noise signals to free
channels.

V. CONCLUSIONS

In this paper we have proposed on - line adaptive learn-
ing algorithms for independent component analysis in
the general case when sensor signals are noisy and the
number of sources as well as their statistics are com-
pletely unknown. Locally optimal nonlinear functions
are derived for various generalized distributions mod-
els. Extensive computer simulations have confirmed
validity and excellent performance of the developed
learning algorithms.
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