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On a New Blind Signal Extraction Algorithm:
Different Criteria and Stability Analysis
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Abstract—In this letter, we consider the problem of simulta-
neous blind signal extraction of arbitrary group sources from a
rather large number of observations. Amari proposed a gradient
algorithm that optimizes the maximum-likelihood (ML) criteria on
the Stiefel manifold and solves the problem when the approximate
(or hypothetical) densities of the desired signals area priori known.
This letter shows how to extend this result to other contrast func-
tions that do not require explicit knowledge of the sources densi-
ties. We also present the algorithm necessary and sufficient local
stability conditions, providing useful bounds for the learning step
size.

Index Terms—Blind source separation, contrast functions, inde-
pendent component analysis, simultaneous blind signal extraction.

I. INTRODUCTION

B LIND SIGNAL separation (BSS) is the problem of
recovering mutually independent unobserved signals

(sources) from their linear mixture. Although this problem has
recently attracted a lot of interest because of its wide number of
applications in diverse fields, BSS can be very computationally
demanding if the number of source signals is large (say, of order
100 or more). In particular, this is the case in biomedical signal
processing applications such as electroencephalographic/mag-
netoencephalographic data processing, where the number of
sensors can be larger than 120 and where it is desired to extract
only some “interesting” sources. Fortunately, sequential blind
signal extraction (BSE) overcomes somewhat this difficulty.
The BSE problem considers the case where only a small subset
of sources has to be recovered from a large number of sensor
signals.

The combined use of BSE and deflation to solve the BSS
problem was originally proposed in [3] and later further ex-
plored in several papers (e.g., [4]). However, the main limitation
of existing BSE algorithms is that most of them can only recover
the sources sequentially, one by one, in order to avoid the pos-
sibility of obtaining the sources replicated at the outputs. In this
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letter, we will present a straightforward technique that allows
the extension of several of the classical criteria for blind source
separation and extraction to the case of the simultaneous blind
extraction of an arbitrary subgroup of ( , where

means the total number of sources) interesting sources.
Let us consider the standard linear mixing model ofun-

known statistically independent source signals drawn from a
random vector process of zero
mean and normalized covariance

, where denotes the identity matrix of rank. These sig-
nals are linearly combined by the memoryless system described
by a mixing matrix to give the observations

(1)

Without loss of generality, we assume that the unknown mixing
matrix is orthogonal, and since the mixture is in-
stantaneous, we can drop the time reference when referring to
the random variables of the considered processes. Note, that the
orthogonality of the mixing matrix can be always
enforced by simply performing prewhitening on the original ob-
servations. For noisy data, the robust prewhitening or orthogo-
nalization can be employed.

In order to extract sources, the observations will be
further processed by a semi-orthogonal separating matrix

, satisfying , which yields to the outputs vector (or
estimated sources)

(2)

where will denote the semi-orthogonal
global transfer matrix from the sources to the outputs. The
semi-orthogonality of the global transfer system will be im-
portant for preserving the spatial decorrelation of the outputs
vector, since .

According to the usual notation, random variables and
their samples are denoted in capital and lowercase letters,
respectively. We will denote by Cumulant
to the th-order cumulant of the random variable, by

to its differential entropy, and
by to the discrete Dirac’s delta or unit impulse signal.

II. CRITERIA FOR SIMULTANEOUS BSE

Let us define a functional that maps each density of
a normalized random variable (n.r.v.) (of zero mean and
unit variance) to a real index that satisfies the following
properties.
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Fig. 1. Considered signal model for simultaneous blind source extraction.

1) , and the minimum value of the index
is obtained when , i.e., when the n.r.v. follows

a Gaussian distribution.
2) is convex (strictly convex) with respect to the linear

combinations of the independent sources (of the indepen-
dent sources for which ), in such a way that, if

, then

(3)

where are the elements of the semi-orthogonal matrix
and , are independent and normalized

random variables.
These properties have been defined in [5], and they are close

to those given in [6] and [7] when the idea of contrast functions
was independently defined. Since then, many functionals that
satisfy the previous properties have been proposed in the litera-
ture, such us, among others, the minimum entropy (ME)-based
index [5], [7]

(4)

the maximum-likelihood (ML)-based index [1, Ch. 3]

constant (5)

and the cumulant-based indexes [3], [4], [6], [8]

(6)

where (typically or ) and are
scaled or normalized nonnegative weighting factors.

From Property 2), the blind extraction of one of the non-
Gaussian sources is obtained, solving the following constrained
maximization problem

subject to (7)

whereas it is well known [6] that the blind source separation of
the whole set of sources is obtained, maximizing

subject to (8)

The next theorem fills the theoretical gap between both previous
approaches.

Theorem 1: Given a set of positive constants
and a functional that satisfies Properties 1)–2),

if the sources can be ordered by decreasing the value of this
functional as

(9)

and if , then, the following objective function

subject to (10)

will be a contrast function whose global maxima correspond
to the extraction of the first sources from the mixture. If,
additionally, , then the global max-
imum is unique and corresponds to the ordered extraction of
the first sources of the mixture, i.e., at this maximum

.
Proof: From Property 2), we have that

(11)

(12)

where

and

are diagonal matrices. But the decorrelation constraint for the
outputs is tantamount to the semi-orthogo-
nality of the global transfer matrix . From the application of
the Poincaré’s separation theorem of matrix algebra, and ac-
cording to the sources ordering (9), the eigenvalues

of satisfy

(13)

Thus, taking into account (13) and the majorization of the di-
agonal elements of the matrix by its eigenvalues, the
maximum of (12) subject to the semi-orthogonality ofis

trace (14)

and, from the strict convexity of whenever , if
, the necessary and sufficient condition

for the equality between (11) and (14) is that , i.e.,
is the ordered extraction matrix of the first sources. On

the other hand, if with equality for
certain subsets of the first sources that have a common value
or index under , the necessary and sufficient condition for
the equality between (11) and (14) is that the matrixcan be
reduced to the form by permutations among the rows
associated with the sources that share the same index.

III. EXTRACTION ALGORITHM

A particularly simple and useful method to maximize any
chosen contrast function is to use the natural Riemannian gra-
dient ascent in the Stiefel manifold of semi-orthogonal matrices,
which is given by

(15)

This leads to the algorithm proposed in [1, Ch. 3] for blind
source extraction using the ML approach

(16)
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TABLE I
PARTIAL ACTIVATIONS FUNCTIONS' (�) ASSOCIATED TOLOW ORDER CUMULANTS

where
is a sample cross correlation matrix, and

is the ac-
tivation function that depends on , the stochastic form of
the index .

The activation functions for the ML-based index
can be explicitly computed only when

the sources densities are known. However, this is not necessary
for the ME-based index , and approximations
of the true activation functions can be found in [6] and in
[1, Ch. 3] using the truncated Edgeword and Gram–Charlier
expansion of the marginal probability density functions of the
outputs. The most robust approach is for the cumulant-based
index, since for this case the general form of activation function
can be obtained without approximations, and it is universal
in the sense that it does not depend on the density of sources
for well-defined indexes (those that are nonzero for all desired
sources). The activation function is

(17)

which is a linear combination of partial activation functions
where each one is related with only oneth-order cu-

mulant. The expressions of the partial activation functions are
explicitly shown in Table I up to order six, although, in practice,
cumulants with order are scarcely used, since their pre-
cise estimation requires a large number of samples.

Our objective is to extract the desired sources, i.e., the source
signals in which the largest index or a contrast value.
However, since we use a gradient algorithm, it can be trapped
in the local maxima corresponding to other valid extracting so-
lutions. Thus, there is no guarantee that we achieve always the
global maximum solution in one single stage of extraction. For-
tunately, extensive simulation experiments show that it is usu-
ally sufficient to repeat the extraction procedure two or three
times with a deflation procedure (see [3] for more details on
deflation) to obtain all desired signals, which are, in our case,
those with the largest index among all possible estimated
sources. An alternative approach is to run the algorithm starting
with different initial conditions. The procedure can be stopped
when all the sources in the last extraction exhibit small indexes.

IV. STABILITY ANALYSIS AND PRACTICAL

IMPLEMENTATION OF THE ALGORITHM

In this section, we will consider an arbitrary nonlinear compo-
nentwise activation function , and we will denote it briefly

as when acting on theth extracted source. The
theorem and its corollary present the obtained stability results.

Theorem 2: Assuming that the mixing system is orthogonal,
the necessary and sufficient local stability conditions of the gra-
dient algorithm in the Stiefel manifold (16) to converge to the
extraction solution are, for all , given by

if (18)

if (19)

if (20)

where the variables (originally
defined in [2]) control the stability of the algorithm.

Proof: Multiplying (16) from the right by the mixing
system , we can study the convergence of iteration in terms
of the global transfer system . In the neighborhood of the
extraction solution, we define a global system in terms of
the deviation matrix as ,
where is skew-symmetric in order to preserve the first order
semi-orthogonality of . After several manipulations of the
iteration, the linearized dynamic of the algorithm around the
extraction point is obtained as

(21)

(22)

for and . Thus, the neces-
sary and sufficient asymptotic stability condition that enforces

and to converge to zero with the run of iterations yields
the presented bounds (18)–(20) for the algorithm step size.

However, it is interesting to observe, that since Amari’s al-
gorithm takes the special form of the EASI algorithm [2] in the
particular case of and , the condition for the
blind separation of all the sources (19) is a simple extension of
the local stability condition of the EASI algorithm [2]

for all (23)

The results of the following corollary, when applied to
Theorem 2, help to express explicitly the bounds for the step
size for each of the three considered indexes.

Corollary 1: The factors that control the local stability are

(24)
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for the entropy- and ML-based indexes and

(25)

for the cumulant-based index.
Proof: We have seen that the stability of the algorithms

critically depends on the factors and on their positiveness.
For the entropy- and ML-based contrasts, we can apply the
Cramer–Rao lower bound for the estimation of the sources, to-
gether with their unit variance constraint and non-Gaussianity,
to obtain the result (24). The proof of the second part of the
theorem relies on the fact that, for the activation function
obtained from the cumulant-based index,
and, thus, for this special case

(26)

which, for any well-defined index , is always posi-
tive for all .

As a consequence of the corollary, if this later index is well
defined for the extracted sources, even when the sources den-
sities are unknown, the activation function (17) guarantees the
local stability of the algorithm for a sufficient small step size
[whose upper bounds are given in (18)–(20)].

V. SIMULATIONS

As an exemplary simulation, we consider random mixtures
of 100 normalized sources (with zero mean and unit variance);
five are asymmetric binary sources with probability mass func-
tion , and 95 are binary sym-
metric sources . In order to favor
the simultaneous extraction of the asymmetric sources from the
mixture, we use an index based on cumulants of odd order (note
that this index will vanish for the symmetric sources). We chose
cumulants of order 3, i.e., and . We set to 5
the number of sources to extract , and we performed 100
random simulations and used the histogram to distinguish the
desired sources among those estimated. In each simulation, we
ran the simultaneous extraction algorithm one or several times
(with deflation in between) until all the asymmetric sources

were recovered. The obtained results were that, in 22% of the
experiments in which we extracted all the desired sources with
just the first run of the algorithm, this quantity increases to 96%
of the experiments if a second run is allowed and to 100% after
the third run. Thus, we can observe that the used index possesses
a high capability of discrimination of asymmetric sources. Sim-
ilar results have been also obtained for continuous distributions.

VI. CONCLUSION

In this letter, we have analyzed the problem of the blind si-
multaneous signal extraction, extending the work of [1, Ch. 3]
to other criteria. We obtained activation functions that are uni-
versal and, thus, robust when the sources densities are unknown.
We also presented the local stability conditions of Amari’s ex-
traction algorithm, providing useful bounds for its step size. Fi-
nally, via simulations, we have shown that there are situations
for which it is possible to find indexes that provide discrimina-
tion capability and allow to favor the simultaneous extraction of
signals, with desired stochastic properties, from a large number
of sensors.
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