IEICE TRANS. FUNDAMENTALS, VOL.E85 -A, NO.12 DECEMBER 2002

[PAPER

Approximate Maximum Likelihood Source Separation

Using the Natural Gradient*®
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SUMMARY This paper addresses a maximum likelihood
method for source separation in the case of overdetermined mix-
tures corrupted by additive white Gaussian noise. We consider an
approximate likelihood which is based on the Laplace approxima-
tion and develop a natural gradient adaptation algorithm to find
a local maximum of the corresponding approximate likelihood.
We present a detailed mathematical derivation of the algorithm
using the Lie group invariance. Useful behavior of the algorithm
is verified by numerical experiments.
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1. Introduction

Source separation is a statistical method which aims at
recovering unknown sources from their linear instan-
taneous mixtures without any prior knowledge of the
mixing process. It has drawn lots of attractions in sig-
nal processing and neural networks since it is a funda-
mental problem encountered in many practical applica-
tions such as speech/image processing, array process-
ing, biomedical signal processing where multiple sensors
are involved.

In the context of source separation, it is assumed
that an m-dimensional observation vector x(t) =
[£1(t) - 2, (t)]F is generated by

x(t) = As(t) + v(t), (1)

where A € R™*"™ (m > n) is called the mizing ma-
triz, s(t) is the n-dimensional vector whose elements
are called sources, and v(t) is the additive white Gaus-
sian noise vector that is assumed to be statistically in-
dependent of s(t). The task of source separation is to
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recover sources from sensor signals x(t) without resort-
ing to any prior knowledge except for the assumption of
statistical independence of sources. Sources can be re-
covered blindly by either estimating the mixing matrix
A or its pseudo-inverse A’ (which is usually referred to
as the demixing matrix W = A').

Two indeterminacies cannot be resolved in source
separation without some prior knowledge. They include
scaling and permutation ambiguities. Thus if the esti-

mate of the mixing matrix, A satisfies ATA = PA
where P is some permutation matrix, A is some non-
singular diagonal matrix, then (A, §) and (A,s) are
said to be related by a waveform-preserving relation
[1]. In zero noise limit, § = Az gives the exact recov-
ery of source vector except for scaling and permutation
ambiguities. In the presence of additive white Gaussian

noise, § = ATm is related to the best linear unbiased
estimator in the presence of isotropic white Gaussian
noise.

A variety of methods for source separation have
been developed (see [2] and references therein). Most
methods of source separation considered complete (m =
n) noise-free (v(t) = 0) mixtures. In such a case, max-
imum likelihood methods were well investigated [3], [4]
and natural gradient adaptation algorithms were devel-
oped [5].

In this paper we consider the case of overdeter-
mined (m > n) noisy mixtures. In the framework of
maximum likelihood, we employ the Laplace approxi-
mation to make the evaluation of the likelihood func-
tion to be mathematically tractable. Then we derive a
natural gradient adaptation algorithm which estimates
the mixing matrix A. The resulting algorithm is re-
ferred to as Approximate Maximum Likelihood Source
Separation (AMLSS).

Throughout this paper, the following assumptions
are made:

AS1 The mixing matrix A has full column rank.

AS2 Sources are mutually independent non-Gaussian
stochastic processes with zero mean.

AS3 Noise is isotropic Gaussian with zero mean and
variance o2 and is statistically independent of
source.

The rest of this paper is organized as follows. In



IEICE TRANS. FUNDAMENTALS, VOL.E85 —A, NO.12 DECEMBER 2002

next section we briefly review the maximum likelihood
estimation method for source separation in the case of
complete noise-free mixtures. In Section 3, we consider
the overdetermined noisy mixtures and propose an ap-
propriate objective function in the framework of maxi-
mum likelihood estimation. We also derive an adaptive
source separation algorithm using the natural gradi-
ent. In Section 4, we present numerical experimental
results and compare the proposed method to some ex-
isting source separation algorithms. Finally conclusions
are drawn in Section 5.

2. Complete Noise-free Mixtures

For the case of complete noise-free mixtures, one as-
sumes the data model

x(t) = As(t), (2)

where the number of sensors is equal to the number of
sources, i.e., m = n. A brief review of maximum likeli-
hood source separation in such a case, is given below.
Let us consider a set of N independent obser-
vations, X = {z(1),z(2),...,z(N)}. Source signals
{si(t)} are assumed to be statistically independent
and their probability density functions are denoted by
{ri(-)}. Then the likelihood function is given by

p(X|A,r) H p(x(t)|A,r) (3)
A single factor in the log-likelihood is given by
—log|det A| + logr(A™ x)

—log | det A| + > ri(8), (4)

i=1

logp(z|A,r) =

where §; = [Aflm]i.
Or in terms of the demixing matrix W = A~ the
log-likelihood can be written as

log p(x|W,r) = log | det W| + Zn(&) (5)

i=1

The maximum likelihood estimator for the mixing ma-
trix A is

A= mjx logp(x|A,T). (6)

Or the maximum likelihood estimator for the demixing
matrix W is the one that maximize the log-likelihood
function (5).

The natural gradient method was shown to be ef-
ficient in on-line learning and to find the steepest di-
rection when the parameter space is the Riemannian
manifold [6]. The maximum likelihood estimate for the
demixing matrix W can be found iteratively using the
natural gradient algorithm that has the form

W(t+1)
=W+ {I-oGO)E" O}WH, (@)

where 7; > 0 is a learning rate. The element-wise non-
linear function ¢(-) is the negative score function whose
ith element is defined by

oi(51) = — dloigj(§i) _ (8)

The detailed derivation of the algorithm (7) can be
found in [5].

Alternatively the natural gradient algorithm to
find the mixing matrix A has the form

Alt+1) = A@) - mA®) {I-e(6(6)5" (1)} 9)

Both algorithms (7) and (9) performs equally well in
the case of complete noise-free mixtures.

Remarks

e The algorithm (7) is one of widely-used source
separation algorithms. The nonlinear information
maximization [7] and the mutual information min-
imization [8] fall on this algorithm. It is referred
to as the conventional source separation algorithm
in this paper.

e As in most adaptive source separation algorithms,
the shapes of nonlinear functions {y;(-)} depend
on the probability distributions of sources that are
unknown in advance. Usually the hypothesized
density model replaces the true distribution. One
interesting aspect of maximum likelihood estima-
tion method for source separation is that a reason-
able mismatch between the hypothesized density
and the true density does not degrade performance
in the task of source separation [4].

e Various methods for the selection of the nonlinear
functions {p;(-)} have been developed [9]-[12].

e Another popular algorithm is the EASI [13] that
has the form

W(t+1) = W(t) + 1 {1 — 3187 )

— p(3(1)3" (1) + §(t)<PT(§(t))} wW(t). (10)

This algorithm was originally derived using the rel-
ative gradient method [13]. Later it was shown
that this algorithm could also be derived by the
natural gradient in Stiefel manifold [14].

e Zhang et al. [15] showed that the algorithm (7)
was also valid for overdetermined mixtures.

3. Overdetermined Noisy Mixtures

This section describes the main contribution of this pa-
per. We consider an objective function which is the
log-likelihood based on the Laplace approximation and
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derive an associated natural gradient adaptation algo-
rithm. The same objective function as ours was also
considered in [16] for learning overcomplete representa-
tion.

We consider the linear data model given in Eq. (1)
with m > n. We assume that the noise vector v(t) is
isotropic Gaussian with mean 0 and variance o2, i.e.,
the probability density function of v(t) is

p(v) = #exp{—%vTU} (11)

(2m02)
3.1 Objective Function

In the task of source separation, both mixing matrix
A and source vector s(t) are unknown in contrast to
the conventional parameter estimation problem. As in
the case of noise-free mixtures, we treat the sources as
nuisance parameters. A single factor of the likelihood
function by marginalizing over the nuisance parameter
space is given by

p(z|A) = / p(z|A, 5)r(s)ds. (12)

In the case of complete noise-free mixtures, the condi-
tional density p(x|A, s) is simply

m n
H Ty — Z @jjSj 5 (13)
j=1

i=1

p(x|A,s)

where a;; denotes the (i, j)-element of A. Thus the
log-likelihood is simplified as Eq. (5). However in the
presence of white Gaussian noise, the conditional den-
sity p(x|A,s) is Gaussian. In general the integral in
(12) for non-Gaussian prior r(s) is intractable.

Let us define the energy function £(s) as

E(s) = —logp(x|A,s) —logr(s). (14)

With this definition, we can rewrite (12) in the form

plald) = [ exp{~(a)}ds. (15)

We assume that £(s) has a local quadratic form around
a most probable value of s, say §. Then we can use the
Laplace approximation [17].

Taylor series expansion of £(s) at § up to second
order gives

E(s) = £(3) + (s = ) VEG)
+3(s = 8/ TE() (s - 9) (16)
where
VE(S) = a‘g(:) ,
seigy — O '
VZE(B) = — [(VE(s 7
) = g5 [veW)']| a7

Since the local quadratic approximation is made at the
minimum § of the energy function (which is a most
probable value of s), the first-order derivative VE(8) in
(16) is equal to zero.

Define As = s — 8, then we have

p(z|A)
=exp{—E&(8 }/exp{—%AsTV2S(§)As}ds
= exp {—E(8)} (2m)F [det (V2E(3))] 2. (18)

Note that

1
p(z|A,s8) = ﬁexp{_
(z|A, 5) @ro?)?
Then, the log-likelihood L is

il Aéllz}(-19)

L = logp(z|A)
—&(8)

+ %log 2 — %logdet (V*E(3))

= logp(x|A, s) +logr(s) + glog 27
—% log det (V*£(3))
= —%log%raz ~ 53 lz — As|” + glogZW
+logr(s) — %logdet (V2£(3)) . (20)
One can easily see that
VE(8) = ATA — V?logr(8). (21)

3.2 Natural Gradient Adaptation Algorithm

The log-likelihood based on the Laplace approxima-
tion is described in (20). Here we derive an adapta-
tion algorithm for estimating A that maximizes the
log-likelihood (20).

The natural gradient was shown to be efficient in
on-line learning and to find the steepest direction when
the parameter space is Riemannian manifold [6]. The
natural gradient learning was successfully applied to
the task of blind source separation [8], [12], [18]-[20] and
multichannel blind deconvolution [21]-[23]. However,
all these methods were restricted to the case of complete
noise-free mixtures.

Here we derive a natural gradient algorithm for
estimating the mixing matrix A. Some of the result
here was motivated by Zhang et. al [15] where it was
shown that even in the case of overdetermined mixtures,
the natural gradient algorithm has the same form as
given in (7) that was derived in the case of complete
mixtures.

We define the manifold of the mixing matrices as
Gl(m,n) = {A € R™ "rank(A) = n}. For A €
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Gl(m,n), there exits an orthogonal matrix @ € R™*™
such that

A=q' | 4], (22

where A; € R™ ™ and A, € R *",

The Lie group structure of the parameter space is
a key ingredient in the calculation of the natural gradi-
ent [6]. In similar manner as in [15], we introduce two
operations on the manifold Gl(m,n),

XoY =@Q7T [ ngllilm ] : (23)
and

x*=q"| iy, | (29
where

co[B] veeh] e

The operator o denotes the multiplication and # rep-
resents the inverse on the manifold Gi(m,n).
The identity on Gl(m,n) is defined as

E=QTH"], (26)

where I,, denotes the n x n identify matrix. It is easy
to see that the manifold with these operations forms a
Lie group.

One important property in the Lie group is the in-
variance of Riemannian metric. Let us define the tan-
gent space of GI(m,n) by T4 and the tangent vectors
by X, Y € T' 4. We define the inner product between
two tangent vectors X and Y at A by (X,Y) 4. The
Lie group invariance ensures

(X, Y)pg=(ZoX,ZoY)z 4, (27)

for any left multiplication transformation Z € Gl(m,n)
that is an onto mapping.

Now we calculate the natural gradient of the
log-likelihood  (20). The conventional gradient
Vlog p(x|A) (see Appendix for detailed derivation) is

-1

Viogp(z|A) = —A (ATA) {I—gp(&)éT}

1 .
+;ijsT. (28)

We denote the natural gradient of the log-likelihood
(20) by VL.

The natural gradient VL is defined by [6]

- /s e
<X,VL>A = <A 0 X, A OVL>E. (29)

Comparing both sides of (29), we have

VL = {AAT + N,} VL, (30)
where
Ni=Q" g .0 e (31)

Therefore the updating rule for Ais given by

AA = —y, [AAT + N,}
{A (ATA)_l {I - go(@)éT} - %ijﬂ

A {I - ¢(§)§T} +C, (32)

where
C = —N; [A (ATAY1 {1 - <p(§)§T}
—%ijgT] . (33)

In [15], they explained which projection matrix N ; was
the best in the sense of minimizing the effect of addi-
tive noise. Although they considered a different cost
function (based on mutual information minimization)
and derived the algorithm for updating the demixing
matrix W, we can make a similar argument here. It
was shown in [15] that the optimal projection Ny is
chosen in such a way that the matrix C is vanished. In
such a case, the updating rule is simplified as

AA = 1A {I - w(g)gT} . (34)

Algorithm Outline: AMLSS

e Given the current estimate of the mixing matrix,
A(t), we infer the source vector by

~

3(t) = (f(t)A(t)) A ). (35)

e Using §(¢) and A(t), we find the new estimate of

the mixing matrix, A(t + 1) by the algorithm (34)
that can be written as

~

A(t+1)
= A() - mA®) {1 - (6" (1)} (36)

e These two steps are repeated until A converges.

Remark: The AMLSS algorithm is very similar to
the algorithm proposed by Lewicki and Sejnowski [16].
We consider the case of overdetermined (undercom-
plete) mixture, whereas underdetermined (overcom-
plete) mixture was considered in [16]. That is why we
can use a simple least squares projection for inference.
Moreover we present a rigorous derivation of the algo-
rithm using the Lie group invariance which is not found
in [16].
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(a)
Fig.1
source 2.

4. Numerical Experiments

We demonstrate the useful behavior of our method,
AMLSS, that is summarized in (35) and (36). We pro-
vide two simulation results, both of which consider the
case of overdetermined noisy mixtures. The AMLSS is
compared with the conventional source separation al-
gorithm in (7).

4.1 Experiment 1

In this experiment, we use two binary sources and the
mixing matrix A € IR**? whose elements are drawn
from standardized Gaussian distribution. We consider
two source separation algorithms: (1) AMLSS; (2) con-
ventional source separation in (7). In order to evaluate
performance, we performed 10 different runs at each
SNR (that varies from 0 dB to 30 dB) and calculated
the average of bit error rate (BER).

Since the recovered source vector § contains the
scaling and permutation ambiguities, the BER is cal-
culated after removing these indeterminacies. For both
algorithms (AMLSS and the conventional method),
randomly-chosen initial value was assigned to A(0) or
W (0). The learning rate n; = .001 was used. We used
the nonlinear function ;(8;) = |3;|%5; that is known to
be effective when sources are sub-Gaussian [13].

The experimental result in terms of BER is shown
in Fig. 1. The AMLSS outperforms the conventional
method in both high and low SNR environments. In
the environment where SNR is greater than 15dB, the
AMLSS method produces 0 BER, whereas the con-
ventional method resulted in a considerable amount of
BER. This numerical experiment shows the high per-
formance of our method when mixtures are noisy.

BER vs SNR for Source 2

T T
—&— AMLSS
— Conventional SS
107 e E
N
107
n: 3
w10 "¢
m
107k
10°F
10’5 L L L L L
0 5 10 20 25 30

15
SNR

(b)

Bit error rate (BER) with respect to SNR in Experiment 1: (a) for source 1; (b)

4.2 Experiment 2

The second numerical experiment was carried out for
blind co-channel signal separation using an antenna ar-
ray. We assume a uniform linear 4-element (m = 4)
antenna array with each element being half wavelength
spaced. We consider n = 2 digitally modulated QPSK
sources with angles of arrival, 0° and 20°.

For performance evaluation, we use the perfor-
mance index (PI) that is defined by

_ L (s ol
PI_n(n—l)Z{<Zmaxﬁ'|gU| 1)

i=1 k=1
- |gril
+ E —— =1, (37)
(k_l max; |g;il

where g;; is the (¢, j)-element of the global system ma-
trix G = AA = WA.

We evaluated the performance of AMLSS and the
conventional method (7) in terms of PI with SNR vary-
ing from 0 dB to 20 dB (see Fig. 2). Since sources
are complex, the transpose operator is replaced by the
Hermitian in both algorithms. Randomly-chosen initial
value was assigned to A(0) or W(0). The learning rate
7N = .01 was used. Once again, the cubic nonlinear
function ;(8;) = |3;]*8; was used for both algorithms.
At each SNR, we performed 100 different runs and eval-
uated the average of the performance index.

Fig. 2 shows that the AMLSS outperforms the con-
ventional source separation method in whole range of
SNR. This results from the objective function 20 which
takes the additive white Gaussian noise into account
and our new natural gradient adaptation algorithm.
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Fig.2 Performance of AMLSS and the conventional source
separation method (7) in experiment 2.

5. Conclusions

In this paper, we have presented a maximum like-
lihood method for source separation for the case of
overdetermined noisy mixtures. In the framework of
maximum likelihood estimation, we have employed the
Laplace approximation to arrive at a mathematical
tractable objective function. We have developed a nat-
ural gradient algorithm to find a local maximum of the
approximate log-likelihood. Our algorithm, AMLSS,
was presented and its performance was compared with
the conventional method. Numerical experiments con-
firmed the useful behavior and high performance of the
AMLSS in the case of overdetermined noisy mixtures.

Appendix

Here we present the detailed calculation of the gradient
of the log-likelihood function (20) with respect to A.
We assume that the most probable value of s is inferred

—1
by & = (ATA) ATz = Al
Derivation of % [[lz — As]|?]
We calculate the infinitesimal increment of ||z — A3||?,
d{|lz — A3|]*}
—d {me —25TA s + §TATA§}
=3TdAT A5 + 57 ATdAs —25TdA . (38)
Thus we have
o ‘
— ||z — A3|)*] = —2(x — A3) "
g4 LIz — AsIF] (x — A8) 3
= —2P%xs’, (39)

where Pj =T—AA'is the orthogonal projection ma-
trix

Derivation of % [logr(8)]

We define
R dlogr;i(5;)
i(8i) = ————, 4
pilss) =~ (40)
and

0(8) = [p1(31),- -, pu(82)]" (41)
With this definition, the infinitesimal increment of
logr(8) is

d{logr(3)} = d{Zlogri(éi)}

Note that
ds = d [(ATA)l} ATz + (ATA) dA Tz
- - (ATA)_1 ATdAs. (43)
Hence we have
d{logr(3)} = T (8) (ATAY1 ATdAs,  (44)
which gives

aiA logr(3)] = A (ATA)_1 0(5)57. (45)

Derivation of % [log det VZE(3)]

We assume that the variance of noise, o2 is small, i.e.,

b ATA
V2E(8) =~ 5 (46)
Then,
d {logdet V>£(3)}
= tr { [v2E()] dV2E(.§)} . (47)
Note that
-1
AV2E(3) = tr{(ATA) dAT A
—1
+ (ATA) ATdA}. (48)
Hence we have
9 llogdet V2€(3)] = 24 (ATA)_1 (49)
54 Logde 8)| = .

Combining the results in (39), (45), and (49), the gra-
dient of the cost function (20) is given by

Vlogp(x|A)
= 2 logp(a] A)]

—_A (ATA)il {I—@(é)éT}. (50)
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